Remote Calculator MCP Server

Remote Calculator MCP Server

A containerized MCP server deployed on Amazon EKS that provides a simple calculator tool for adding two numbers. Demonstrates how to deploy and scale MCP servers in a Kubernetes environment with proper session management and HTTP endpoints.

Category
访问服务器

README

Remote MCP Server on Kubernetes (Amazon EKS)

A containerized MCP (Model Context Protocol) server using FastMCP that provides a simple calculator tool for adding two numbers. This MCP server runs on Amazon EKS. The highlevel diagram of this project below: High Level Design

Detailed walkthrough video

Files

  • server.py - FastMCP server with add_numbers tool
  • requirements.txt - Python dependencies
  • Dockerfile - Container definition
  • k8s-deployment.yaml - Kubernetes deployment and LoadBalancer service
  • test_mcp_client.py - Test Remote MCP Server

Building the Container

docker build -t mcp-calculator:latest .

Running Locally

# Run the container locally
docker run -p 8000:8000 mcp-calculator:latest

The server will be available at http://localhost:8000

Push to repo

You can push this image to either Dockerhub or an ECR repo

Deploying to Amazon EKS

Prerequisites

  • AWS CLI configured with appropriate permissions
  • kubectl installed
  • Docker installed and running

EKS Cluster

You can use an existing EKS cluster or create a new one, it's upto you. Ensure that your terminal has access to run Kubectl on it

Deployment Steps

IMPORTANT: Change the container image to the repo URI in k8s-deployment.yaml file

  1. Deploy MCP Server container to EKS:
# Deploy the application
kubectl apply -f k8s-deployment.yaml

# Check deployment status
kubectl rollout status deployment/mcp-calculator

# Get service information
kubectl get services mcp-calculator-service
  1. Get the LoadBalancer external IP:
kubectl get services mcp-calculator-service -w

Testing the MCP Server

The server provides one tool:

  • add_numbers(a: float, b: float) -> float - Adds two numbers together

Testing with curl

The MCP server is currently deployed and accessible at:

http://<insert loadbalancer url>/mcp/

Complete curl Test Workflow

Step 1: Initialize MCP Session and Get Session ID

SESSION_ID=$(curl -s -X POST \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2024-11-05","capabilities":{"roots":{"listChanged":true},"sampling":{}},"clientInfo":{"name":"curl-test","version":"1.0.0"}}}' \
  http://<insert loadbalancer url>/mcp/ \
  -D /dev/stderr 2>&1 | grep "mcp-session-id:" | cut -d' ' -f2 | tr -d '\r')

echo "Session ID: $SESSION_ID"

Step 2: Send Initialization Notification (Required by MCP Protocol)

curl -s -X POST \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{"jsonrpc":"2.0","method":"notifications/initialized"}' \
  http://<insert loadbalancer url>/mcp/

Step 3: List Available Tools (Optional)

curl -X POST \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{"jsonrpc":"2.0","id":2,"method":"tools/list"}' \
  http://<insert loadbalancer url>/mcp/

Expected Result:

event: message
data: {"jsonrpc":"2.0","id":2,"result":{"tools":[{"name":"add_numbers","description":"Add two numbers together.\n\nArgs:\n    a: First number to add\n    b: Second number to add\n    \nReturns:\n    The sum of a and b","inputSchema":{"type":"object","properties":{"a":{"type":"number"},"b":{"type":"number"}},"required":["a","b"]}}]}}

Step 4: Call the add_numbers Tool

curl -X POST \
  -H "Content-Type: application/json" \
  -H "Accept: application/json, text/event-stream" \
  -H "mcp-session-id: $SESSION_ID" \
  -d '{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"add_numbers","arguments":{"a":15.5,"b":24.3}}}' \
  http://<insert loadbalancer url>/mcp/

Expected Result:

event: message
data: {"jsonrpc":"2.0","id":3,"result":{"content":[{"type":"text","text":"39.8"}],"structuredContent":{"result":39.8},"isError":false}}

Testing with Python client

Replace the URL in the test_mcp_client.py, and execute it. This will act as MCP client and test the MCP server

Important Notes

  • Session Timeout: Sessions expire after ~30-60 seconds due to FastMCP framework limitations
  • Rapid Execution: Execute all steps quickly or use the one-liner command
  • MCP Protocol: The notifications/initialized step is required by the MCP protocol after initialization

Cleanup

To remove from Kubernetes:

kubectl delete -f k8s-deployment.yaml

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选