Rendi MCP Server

Rendi MCP Server

Enables cloud-based FFmpeg video and audio processing through the Rendi API, allowing AI assistants to convert, edit, and manipulate media files without local FFmpeg installation.

Category
访问服务器

README

Rendi MCP Server

A Model Context Protocol (MCP) server that provides cloud-based FFmpeg processing capabilities through the Rendi API. This server enables AI assistants to run FFmpeg commands in the cloud without local installation or infrastructure.

Features

This MCP server provides four powerful tools for cloud-based video and audio processing:

🎬 Run FFmpeg Command

Execute a single FFmpeg command in the cloud with automatic file handling and processing. Perfect for simple video conversions, resizing, format changes, and basic editing tasks.

⛓️ Run Chained FFmpeg Commands

Submit multiple sequential FFmpeg commands where outputs from earlier commands can be used as inputs in later ones. This is ideal for complex workflows like:

  • Convert video → Extract thumbnail → Apply watermark
  • Trim video → Resize → Extract audio → Convert to MP3

Chained commands are more efficient than running commands separately as they share system resources.

📊 Poll FFmpeg Command

Check the status of submitted commands and retrieve results including:

  • Processing status (queued, processing, success, failed)
  • Execution time and performance metrics
  • Output file metadata (resolution, duration, bitrate, codec, etc.)
  • Direct download URLs for processed files

🗑️ Delete Command Files

Clean up output files from Rendi's storage when you're done with them. This helps manage storage space and keeps your workspace organized.

What is Rendi?

Rendi is a cloud-based FFmpeg API service that allows you to run FFmpeg commands without installing FFmpeg locally. It provides:

  • ☁️ Cloud-based processing infrastructure
  • 🚀 Scalable vCPU allocation (up to your account limit)
  • 📦 Automatic file storage and management
  • 🔒 Secure API key authentication
  • ⚡ Fast processing with configurable resources

Prerequisites

  • A Rendi API key (get one at rendi.dev)
  • An MCP-compatible client (Claude Desktop, Cline, etc.)

Installation

Via Smithery

The easiest way to install this server is through Smithery:

npx @smithery/cli install rendi-mcp-server

You'll be prompted to enter your Rendi API key during installation.

Manual Installation

  1. Clone this repository:
git clone https://github.com/ctaylor86/rendi-mcp-server.git
cd rendi-mcp-server
  1. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Configure your MCP client to use this server with your Rendi API key.

Configuration

This server requires one configuration parameter:

  • rendiApiKey (required): Your Rendi API key for authentication

Example Configuration for Claude Desktop

Add this to your claude_desktop_config.json:

{
  "mcpServers": {
    "rendi": {
      "command": "node",
      "args": ["/path/to/rendi-mcp-server/dist/index.js"],
      "env": {
        "RENDI_API_KEY": "your-rendi-api-key-here"
      }
    }
  }
}

Usage Examples

Simple Video Conversion

Use the run_ffmpeg_command tool to convert a video to MP4:
- Command: "-i {{in_1}} -c:v libx264 -c:a aac {{out_1}}"
- Input files: {"in_1": "https://example.com/video.avi"}
- Output files: {"out_1": "converted.mp4"}

Extract Thumbnail from Video

Use the run_ffmpeg_command tool to extract a thumbnail:
- Command: "-i {{in_1}} -ss 00:00:05 -vframes 1 {{out_1}}"
- Input files: {"in_1": "https://example.com/video.mp4"}
- Output files: {"out_1": "thumbnail.jpg"}

Complex Workflow with Chained Commands

Use the run_chained_ffmpeg_commands tool for a multi-step workflow:
1. Concatenate two videos
2. Extract a thumbnail from the result

Commands:
[
  "-i {{in_1}} -i {{in_2}} -filter_complex \"[0:v][1:v]concat=n=2:v=1:a=0[v]\" -map [v] {{out_1}}",
  "-i {{out_1}} -ss 00:00:10 -vframes 1 {{out_2}}"
]

Input files: {
  "in_1": "https://example.com/part1.mp4",
  "in_2": "https://example.com/part2.mp4"
}

Output files: {
  "out_1": "concatenated.mp4",
  "out_2": "thumbnail.jpg"
}

Check Command Status

After submitting a command, use poll_ffmpeg_command with the returned command_id to check status and get results.

Clean Up Files

When you're done with the output files, use delete_command_files with the command_id to free up storage.

Important Notes

File Naming Convention

Rendi uses a specific aliasing system for files:

  • Input files: Must use keys starting with in_ (e.g., in_1, in_video, in_audio)
  • Output files: Must use keys starting with out_ (e.g., out_1, out_result, out_thumbnail)
  • In commands: Reference files using {{alias}} format (e.g., {{in_1}}, {{out_1}})

Input File Requirements

  • Input files must be publicly accessible URLs
  • Supported sources: Direct URLs, Google Drive, Dropbox, S3, Rendi storage, etc.
  • The filename should appear at the end of the URL

Output File Storage

  • Output files are stored indefinitely on Rendi's servers until you delete them
  • Each output file includes a direct download URL
  • Use the delete_command_files tool to clean up when done

Processing Limits

  • Maximum 10 commands per chain
  • Default timeout: 300 seconds per command (configurable)
  • Default vCPUs: 8 (configurable up to your account limit)

Development

Run in Development Mode

npm run dev

Build

npm run build

Start Production Server

npm start

Architecture

This server is built using:

  • TypeScript for type-safe development
  • Express for HTTP server functionality
  • @modelcontextprotocol/sdk for MCP protocol implementation
  • @smithery/sdk for Smithery integration
  • Zod for schema validation
  • Docker for containerized deployment

API Reference

For detailed information about the Rendi API, visit:

License

MIT

Support

For issues with this MCP server, please open an issue on GitHub.

For Rendi API support, visit rendi.dev or check their documentation.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选