Report Builder MCP Server
Formats AI agent outputs into professional reports, emails, and documents with branding, quality validation, and executive summaries for enterprise AI operations.
README
Report Builder MCP Server
An MCP (Model Context Protocol) server for formatting AI agent outputs into professional reports, emails, and documents. Built for the AI Operations Platform.
🎯 Purpose
This MCP server helps you:
- ✅ Format agent outputs into email-ready templates
- ✅ Create professional HTML reports with branding
- ✅ Generate executive summaries from long content
- ✅ Validate output quality (detect generic AI language)
- ✅ Apply client-specific branding to outputs
🚀 Quick Start
Option 1: Use with Replit (Recommended for Testing)
-
Fork this to Replit:
- Go to Replit.com
- Click "Create Repl" → Import from GitHub
- Or create a new Node.js repl and copy these files
-
Install dependencies:
npm install -
Test the server:
npm test -
Run HTTP API (for platform integration):
npm install express node http-server.js
Option 2: Deploy to Railway/Render
- Push to GitHub
- Connect to Railway.app or Render.com
- Set build command:
npm install - Set start command:
node http-server.js - Deploy!
Option 3: Use with Claude Desktop
-
Install locally:
git clone <your-repo> cd report-builder-mcp npm install -
Add to Claude Desktop config:
Mac:
~/Library/Application Support/Claude/claude_desktop_config.jsonWindows:
%APPDATA%/Claude/claude_desktop_config.json{ "mcpServers": { "report-builder": { "command": "node", "args": ["/absolute/path/to/report-builder-mcp/server.js"] } } } -
Restart Claude Desktop
🛠️ Available Tools
1. create_email_template
Converts agent output into email-ready format.
Input:
{
"content": "Q4 revenue exceeded expectations by 15%...",
"recipient_name": "John Smith",
"subject": "Q4 Performance Report",
"sender_name": "Audrey - Financial Analyst",
"branding": "TechCorp Analytics",
"include_disclaimer": true
}
2. format_report_html
Creates professional HTML report with sections and styling.
Input:
{
"title": "Quarterly Analysis Report",
"content": "Main report content...",
"sections": [
{
"title": "Executive Summary",
"content": "Key findings..."
}
],
"summary": "Brief overview...",
"branding": "Company Name"
}
3. validate_output_quality
Checks agent output for generic AI language and specialization.
Input:
{
"content": "Your agent's output here...",
"expected_role": "legal assistant",
"check_tone": true
}
Output:
{
"quality_score": 85,
"status": "GOOD",
"issues": [],
"suggestions": [],
"content_length": 245
}
4. create_executive_summary
Condenses long content into key points.
Input:
{
"full_content": "Long detailed content...",
"max_points": 5,
"include_recommendations": true
}
5. add_branding
Applies client-specific branding to content.
Input:
{
"content": "Your content here...",
"client_id": "client-123",
"brand_elements": {
"primary_color": "#0066cc",
"company_name": "TechCorp",
"tagline": "Excellence in AI"
}
}
🌐 HTTP API Usage
If you're running the HTTP server (node http-server.js), you can call tools via REST API:
Health Check
curl http://localhost:3000/health
List Tools
curl http://localhost:3000/tools
Format Email (Convenience Endpoint)
curl -X POST http://localhost:3000/format-email \
-H "Content-Type: application/json" \
-d '{
"content": "Q4 revenue exceeded expectations...",
"recipient": "John Smith",
"subject": "Q4 Report",
"sender": "Audrey"
}'
Check Quality (Convenience Endpoint)
curl -X POST http://localhost:3000/check-quality \
-H "Content-Type: application/json" \
-d '{
"content": "As an AI, I cannot provide legal advice...",
"role": "legal assistant"
}'
Execute Any Tool
curl -X POST http://localhost:3000/tools/create_executive_summary \
-H "Content-Type: application/json" \
-d '{
"full_content": "Your long content here...",
"max_points": 5
}'
🔗 Integration with Your Platform
N8N Workflow Integration
Create an N8N workflow:
- Webhook Trigger - Receives data from your AI agent
- HTTP Request Node - Calls this MCP API
- Method: POST
- URL:
https://your-deployed-mcp.com/tools/create_email_template - Body: Agent output data
- Process Response - Format the result
- Return to Platform - Send formatted output back
Example N8N HTTP Request:
{
"method": "POST",
"url": "{{ $env.MCP_API_URL }}/format-email",
"body": {
"content": "{{ $json.agent_output }}",
"recipient": "{{ $json.recipient_name }}",
"subject": "{{ $json.subject }}",
"sender": "{{ $json.agent_name }}"
}
}
Direct Platform Integration
If your platform supports HTTP calls:
// In your platform's agent workflow
const response = await fetch('https://your-mcp-api.com/format-email', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
content: agentOutput,
recipient: customerName,
subject: reportTitle,
sender: agentName
})
});
const { email } = await response.json();
// Use formatted email
📝 Action Items Addressed
This MCP helps with your meeting action items:
✅ Employee Response Customization - Use validate_output_quality to test if Audrey's responses are specialized
✅ Report Generation Workflow - Use create_email_template and format_report_html to format outputs for customers
✅ MCP Integration - This entire server demonstrates MCP integration for your platform
🧪 Testing
Run the test suite:
npm test
This will test all 5 tools with example data.
📦 Package Updates
Update dependencies:
npm install @modelcontextprotocol/sdk@latest
Add Express for HTTP API:
npm install express
🐛 Troubleshooting
MCP not appearing in Claude Desktop?
- Check the path in your config is absolute
- Restart Claude Desktop completely
- Check server.js has execute permissions:
chmod +x server.js
HTTP API not working?
- Make sure Express is installed:
npm install express - Check the port is available (default: 3000)
- Look for error messages in console
Tools returning errors?
- Check the input matches the expected schema
- Use the test script to validate:
npm test - Check server logs for specific error messages
🚀 Next Steps
- Test locally - Run
npm testto see it work - Deploy to Railway - Get a public URL for platform integration
- Create N8N workflow - Connect to your AI Operations Platform
- Build more tools - Add custom tools for your specific needs
📖 Additional Resources
👤 Author
Built by Nathan for the AI Operations Platform collaboration with Chris, David, and Charlie Butler.
📄 License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。