Research MCP

Research MCP

Enables LLMs to search, analyze, and summarize academic research papers in real-time from arXiv, Semantic Scholar, and PubMed. Provides automatic deduplication, citation analysis, and BibTeX generation across multiple research databases.

Category
访问服务器

README

🧠 Research MCP - Model Context Protocol Research Assistant

npm version GitHub License: MIT

A complete Model Context Protocol (MCP)-based Research Assistant that enables LLMs to fetch, analyze, and summarize academic research papers in real-time from multiple trusted sources: arXiv, Semantic Scholar, and PubMed.

🔍 Overview

The Research MCP system provides standardized access to academic research databases through three specialized MCP servers. Each server implements the MCP specification, allowing AI assistants to query live research data, process results, and return structured insights like summaries, comparisons, and citations.

✨ Features

  • 📚 Multi-Source Search: Query arXiv, Semantic Scholar, and PubMed simultaneously
  • 🔄 Automatic Deduplication: Smart paper matching across different sources
  • 📊 Citation Analysis: Track citation counts and influential papers
  • 📝 BibTeX Generation: Automatic citation formatting for all sources
  • Rate Limiting: Built-in request throttling to respect API limits
  • 🎯 Advanced Filtering: Filter by year, author, venue, and more
  • 🔍 Full Metadata: Complete paper information including abstracts, authors, and links

🏗️ Architecture

┌─────────────────────────────────────────────────────────────┐
│                      LLM Client                             │
│  (Issues natural language queries)                          │
└────────────────┬────────────────────────────────────────────┘
                 │
                 │ MCP Protocol
                 │
┌────────────────┴───────────────────────────────────────────┐
│                   MCP Servers                              │
│  ┌──────────┐   ┌──────────────┐  ┌──────────┐             │
│  │  arXiv   │   │   Semantic   │  │  PubMed  │             │
│  │  Server  │   │    Scholar   │  │  Server  │             │
│  └────┬─────┘   └──────┬───────┘  └────┬─────┘             │
└───────┼────────────────┼───────────────┼───────────────────┘
        │                │               │
        │                │               │
┌───────┴────────────────┴───────────────┴───────────────────┐
│              External APIs                                 │
│    arXiv API    Semantic Scholar API    PubMed E-utils     │
└────────────────────────────────────────────────────────────┘

📋 Prerequisites

  • Node.js 18+
  • An MCP-compatible client (Claude Desktop, Cline, etc.)

🚀 Installation

Quick Start with npx (Recommended)

No installation or API keys needed! Just add to your MCP client configuration:

{
  "mcpServers": {
    "research-arxiv": {
      "command": "npx",
      "args": ["-y", "researchmcp", "arxiv"]
    },
    "research-semantic-scholar": {
      "command": "npx",
      "args": ["-y", "researchmcp", "semantic"]
    },
    "research-pubmed": {
      "command": "npx",
      "args": ["-y", "researchmcp", "pubmed"]
    }
  }
}

That's it! All three servers work perfectly without any API keys or configuration.


Local Development

For contributing or modifying the code:

git clone https://github.com/gyash1512/ResearchMCP.git
cd ResearchMCP
npm install
npm run build

🎮 Usage

Using with npx (Recommended)

Just configure in your MCP client - that's it! No API keys needed.

Local Development

Start servers individually for testing:

npm run start:arxiv
npm run start:semantic
npm run start:pubmed

MCP Configuration

Simple setup - no API keys required:

{
  "mcpServers": {
    "research-arxiv": {
      "command": "npx",
      "args": ["-y", "researchmcp", "arxiv"]
    },
    "research-semantic-scholar": {
      "command": "npx",
      "args": ["-y", "researchmcp", "semantic"]
    },
    "research-pubmed": {
      "command": "npx",
      "args": ["-y", "researchmcp", "pubmed"]
    }
  }
}

<details> <summary><b>Optional:</b> Add API keys for higher rate limits (only if needed)</summary>

{
  "mcpServers": {
    "research-semantic-scholar": {
      "command": "npx",
      "args": ["-y", "researchmcp", "semantic"],
      "env": {
        "SEMANTIC_SCHOLAR_API_KEY": "your_key_here"
      }
    },
    "research-pubmed": {
      "command": "npx",
      "args": ["-y", "researchmcp", "pubmed"],
      "env": {
        "PUBMED_API_KEY": "your_key_here",
        "PUBMED_EMAIL": "your_email@example.com"
      }
    }
  }
}

</details>

<details> <summary>For local development</summary>

{
  "mcpServers": {
    "research-arxiv": {
      "command": "node",
      "args": ["./dist/servers/arxiv-server.js"],
      "cwd": "/absolute/path/to/ResearchMCP"
    },
    "research-semantic-scholar": {
      "command": "node",
      "args": ["./dist/servers/semantic-scholar-server.js"],
      "cwd": "/absolute/path/to/ResearchMCP"
    },
    "research-pubmed": {
      "command": "node",
      "args": ["./dist/servers/pubmed-server.js"],
      "cwd": "/absolute/path/to/ResearchMCP"
    }
  }
}

Note: Replace /absolute/path/to/ResearchMCP with your actual project path.

</details>

📚 Available Tools

arXiv Server

search_arxiv

Search for papers on arXiv by keyword, author, or subject.

Parameters:

  • query (string, required): Search query
  • maxResults (number, optional): Max results (default: 10, max: 100)
  • startYear (number, optional): Filter by start year
  • endYear (number, optional): Filter by end year
  • author (string, optional): Filter by author name
  • sortBy (string, optional): Sort by relevance, lastUpdatedDate, or submittedDate

Example:

{
  "query": "quantum computing",
  "maxResults": 5,
  "startYear": 2023,
  "sortBy": "relevance"
}

get_arxiv_paper

Get detailed information about a specific arXiv paper by ID.

Parameters:

  • arxivId (string, required): arXiv paper ID (e.g., "2301.12345")

arxiv_to_bibtex

Convert arXiv paper to BibTeX format.

Parameters:

  • arxivId (string, required): arXiv paper ID

Semantic Scholar Server

search_semantic_scholar

Search for papers with citation information.

Parameters:

  • query (string, required): Search query
  • maxResults (number, optional): Max results (default: 10, max: 100)
  • startYear (number, optional): Filter by start year
  • endYear (number, optional): Filter by end year

Example:

{
  "query": "transformer architecture",
  "maxResults": 10,
  "startYear": 2023
}

get_semantic_scholar_paper

Get paper by Semantic Scholar ID or DOI.

Parameters:

  • identifier (string, required): Paper ID or DOI

get_paper_citations

Get papers that cite a specific paper.

Parameters:

  • paperId (string, required): Semantic Scholar paper ID
  • maxResults (number, optional): Max citing papers (default: 10, max: 100)

semantic_scholar_to_bibtex

Convert paper to BibTeX format.

Parameters:

  • identifier (string, required): Paper ID or DOI

PubMed Server

search_pubmed

Search biomedical and life sciences papers.

Parameters:

  • query (string, required): Search query (supports MeSH terms)
  • maxResults (number, optional): Max results (default: 10, max: 100)
  • startYear (number, optional): Filter by start year
  • endYear (number, optional): Filter by end year

Example:

{
  "query": "cancer treatment",
  "maxResults": 5,
  "startYear": 2022
}

get_pubmed_paper

Get paper by PMID.

Parameters:

  • pmid (string, required): PubMed ID

pubmed_to_bibtex

Convert paper to BibTeX format.

Parameters:

  • pmid (string, required): PubMed ID

💡 Example Queries

Example 1: Multi-Source Research Query

Query: "Find recent papers on federated learning in healthcare"

Workflow:

  1. Search arXiv: search_arxiv with query "federated learning healthcare", startYear: 2023
  2. Search Semantic Scholar: search_semantic_scholar with same parameters
  3. Search PubMed: search_pubmed with same parameters
  4. Combine and deduplicate results
  5. Sort by citation count and relevance
  6. Generate summary with top 5 papers

Expected Output:

  • Comprehensive list of papers from all sources
  • Deduplicated results
  • Citation counts where available
  • Links to full papers
  • BibTeX citations

Example 2: Most Cited Paper

Query: "What's the most cited 2023 paper on quantum machine learning?"

Workflow:

  1. Call search_semantic_scholar:
    {
      "query": "quantum machine learning",
      "maxResults": 50,
      "startYear": 2023,
      "endYear": 2023
    }
    
  2. Sort results by citationCount
  3. Get detailed info with get_semantic_scholar_paper
  4. Generate BibTeX with semantic_scholar_to_bibtex

Expected Output:

  • Paper title and authors
  • Citation count and venue
  • Abstract and key findings
  • BibTeX citation
  • Link to paper

Example 3: Research Trend Analysis

Query: "Summarize transformer innovations after 2023"

Workflow:

  1. Search multiple sources for "transformer architecture" papers after 2023
  2. Extract key information from abstracts
  3. Identify common themes and methods
  4. Generate trend analysis
  5. Provide top papers with citations

Expected Output:

  • Overview of key innovations
  • Timeline of developments
  • Most influential papers
  • Citation network analysis
  • Recommended reading list

Example 4: Citation Network

Query: "Find papers citing 'Attention is All You Need'"

Workflow:

  1. Find original paper: search_semantic_scholar with title
  2. Get paper ID from results
  3. Call get_paper_citations with the paper ID
  4. Filter by year/relevance
  5. Generate summary of citing papers

Expected Output:

  • List of papers that cite the original work
  • Citation contexts
  • Related research directions
  • Impact analysis

🔧 API Response Schemas

arXiv Paper Object

{
  id: string;              // arXiv ID (e.g., "2301.12345")
  title: string;
  authors: string[];
  abstract: string;
  published: string;       // ISO date
  updated: string;         // ISO date
  url: string;            // Paper URL
  pdfUrl: string;         // PDF download URL
  categories: string[];   // Subject categories
  primaryCategory: string;
}

Semantic Scholar Paper Object

{
  paperId: string;
  title: string;
  abstract: string | null;
  year: number | null;
  authors: Array<{
    authorId: string;
    name: string;
  }>;
  citationCount: number;
  referenceCount: number;
  influentialCitationCount: number;
  url: string;
  venue: string | null;
  publicationDate: string | null;
}

PubMed Paper Object

{
  pmid: string;            // PubMed ID
  title: string;
  abstract: string;
  authors: string[];
  journal: string;
  year: string;
  doi: string | null;
  url: string;
  publicationTypes: string[];
  meshTerms: string[];    // Medical Subject Headings
}

🛡️ Rate Limiting

All servers work great without API keys:

Server Default Rate With API Key Do You Need Keys?
arXiv 3 req/sec N/A ❌ No - works perfectly!
Semantic Scholar 1-3 req/sec 10 req/sec ❌ No - unless making 100+ queries/min
PubMed 3 req/sec 10 req/sec ❌ No - unless making 100+ queries/min

Recommendation: Start without any API keys. Only add them if you hit rate limits.

🔒 Security Notes

  • No API keys needed - all servers work out of the box
  • If using API keys, pass via MCP config env section (see optional config above)
  • Never commit API keys to version control
  • Respect API rate limits and terms of service

📖 MCP Specification Compliance

This implementation follows the Model Context Protocol specification:

  • ✅ Standard tool definition schema
  • ✅ JSON-based request/response format
  • ✅ Error handling with proper status codes
  • ✅ Resource management and cleanup
  • ✅ Stdio transport for client communication

🤝 Contributing

Contributions are welcome! Areas for improvement:

  • Additional research sources (IEEE, ACM, etc.)
  • Advanced filtering and ranking algorithms
  • Paper recommendation system
  • Citation graph visualization
  • Full-text analysis capabilities

📄 License

MIT License - See LICENSE file for details

🙏 Acknowledgments

  • arXiv for open access to research papers
  • Semantic Scholar for citation data and API
  • PubMed/NCBI for biomedical research database
  • Model Context Protocol team for the MCP specification

📞 Support

For issues, questions, or contributions:

  • Open an issue on GitHub
  • Check API documentation for each service
  • Review MCP specification for protocol details

Built with ❤️ using TypeScript and the Model Context Protocol

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选