Research MCP
Enables LLMs to search, analyze, and summarize academic research papers in real-time from arXiv, Semantic Scholar, and PubMed. Provides automatic deduplication, citation analysis, and BibTeX generation across multiple research databases.
README
🧠 Research MCP - Model Context Protocol Research Assistant
A complete Model Context Protocol (MCP)-based Research Assistant that enables LLMs to fetch, analyze, and summarize academic research papers in real-time from multiple trusted sources: arXiv, Semantic Scholar, and PubMed.
🔍 Overview
The Research MCP system provides standardized access to academic research databases through three specialized MCP servers. Each server implements the MCP specification, allowing AI assistants to query live research data, process results, and return structured insights like summaries, comparisons, and citations.
✨ Features
- 📚 Multi-Source Search: Query arXiv, Semantic Scholar, and PubMed simultaneously
- 🔄 Automatic Deduplication: Smart paper matching across different sources
- 📊 Citation Analysis: Track citation counts and influential papers
- 📝 BibTeX Generation: Automatic citation formatting for all sources
- ⚡ Rate Limiting: Built-in request throttling to respect API limits
- 🎯 Advanced Filtering: Filter by year, author, venue, and more
- 🔍 Full Metadata: Complete paper information including abstracts, authors, and links
🏗️ Architecture
┌─────────────────────────────────────────────────────────────┐
│ LLM Client │
│ (Issues natural language queries) │
└────────────────┬────────────────────────────────────────────┘
│
│ MCP Protocol
│
┌────────────────┴───────────────────────────────────────────┐
│ MCP Servers │
│ ┌──────────┐ ┌──────────────┐ ┌──────────┐ │
│ │ arXiv │ │ Semantic │ │ PubMed │ │
│ │ Server │ │ Scholar │ │ Server │ │
│ └────┬─────┘ └──────┬───────┘ └────┬─────┘ │
└───────┼────────────────┼───────────────┼───────────────────┘
│ │ │
│ │ │
┌───────┴────────────────┴───────────────┴───────────────────┐
│ External APIs │
│ arXiv API Semantic Scholar API PubMed E-utils │
└────────────────────────────────────────────────────────────┘
📋 Prerequisites
- Node.js 18+
- An MCP-compatible client (Claude Desktop, Cline, etc.)
🚀 Installation
Quick Start with npx (Recommended)
No installation or API keys needed! Just add to your MCP client configuration:
{
"mcpServers": {
"research-arxiv": {
"command": "npx",
"args": ["-y", "researchmcp", "arxiv"]
},
"research-semantic-scholar": {
"command": "npx",
"args": ["-y", "researchmcp", "semantic"]
},
"research-pubmed": {
"command": "npx",
"args": ["-y", "researchmcp", "pubmed"]
}
}
}
That's it! All three servers work perfectly without any API keys or configuration.
Local Development
For contributing or modifying the code:
git clone https://github.com/gyash1512/ResearchMCP.git
cd ResearchMCP
npm install
npm run build
🎮 Usage
Using with npx (Recommended)
Just configure in your MCP client - that's it! No API keys needed.
Local Development
Start servers individually for testing:
npm run start:arxiv
npm run start:semantic
npm run start:pubmed
MCP Configuration
Simple setup - no API keys required:
{
"mcpServers": {
"research-arxiv": {
"command": "npx",
"args": ["-y", "researchmcp", "arxiv"]
},
"research-semantic-scholar": {
"command": "npx",
"args": ["-y", "researchmcp", "semantic"]
},
"research-pubmed": {
"command": "npx",
"args": ["-y", "researchmcp", "pubmed"]
}
}
}
<details> <summary><b>Optional:</b> Add API keys for higher rate limits (only if needed)</summary>
{
"mcpServers": {
"research-semantic-scholar": {
"command": "npx",
"args": ["-y", "researchmcp", "semantic"],
"env": {
"SEMANTIC_SCHOLAR_API_KEY": "your_key_here"
}
},
"research-pubmed": {
"command": "npx",
"args": ["-y", "researchmcp", "pubmed"],
"env": {
"PUBMED_API_KEY": "your_key_here",
"PUBMED_EMAIL": "your_email@example.com"
}
}
}
}
</details>
<details> <summary>For local development</summary>
{
"mcpServers": {
"research-arxiv": {
"command": "node",
"args": ["./dist/servers/arxiv-server.js"],
"cwd": "/absolute/path/to/ResearchMCP"
},
"research-semantic-scholar": {
"command": "node",
"args": ["./dist/servers/semantic-scholar-server.js"],
"cwd": "/absolute/path/to/ResearchMCP"
},
"research-pubmed": {
"command": "node",
"args": ["./dist/servers/pubmed-server.js"],
"cwd": "/absolute/path/to/ResearchMCP"
}
}
}
Note: Replace
/absolute/path/to/ResearchMCPwith your actual project path.
</details>
📚 Available Tools
arXiv Server
search_arxiv
Search for papers on arXiv by keyword, author, or subject.
Parameters:
query(string, required): Search querymaxResults(number, optional): Max results (default: 10, max: 100)startYear(number, optional): Filter by start yearendYear(number, optional): Filter by end yearauthor(string, optional): Filter by author namesortBy(string, optional): Sort by relevance, lastUpdatedDate, or submittedDate
Example:
{
"query": "quantum computing",
"maxResults": 5,
"startYear": 2023,
"sortBy": "relevance"
}
get_arxiv_paper
Get detailed information about a specific arXiv paper by ID.
Parameters:
arxivId(string, required): arXiv paper ID (e.g., "2301.12345")
arxiv_to_bibtex
Convert arXiv paper to BibTeX format.
Parameters:
arxivId(string, required): arXiv paper ID
Semantic Scholar Server
search_semantic_scholar
Search for papers with citation information.
Parameters:
query(string, required): Search querymaxResults(number, optional): Max results (default: 10, max: 100)startYear(number, optional): Filter by start yearendYear(number, optional): Filter by end year
Example:
{
"query": "transformer architecture",
"maxResults": 10,
"startYear": 2023
}
get_semantic_scholar_paper
Get paper by Semantic Scholar ID or DOI.
Parameters:
identifier(string, required): Paper ID or DOI
get_paper_citations
Get papers that cite a specific paper.
Parameters:
paperId(string, required): Semantic Scholar paper IDmaxResults(number, optional): Max citing papers (default: 10, max: 100)
semantic_scholar_to_bibtex
Convert paper to BibTeX format.
Parameters:
identifier(string, required): Paper ID or DOI
PubMed Server
search_pubmed
Search biomedical and life sciences papers.
Parameters:
query(string, required): Search query (supports MeSH terms)maxResults(number, optional): Max results (default: 10, max: 100)startYear(number, optional): Filter by start yearendYear(number, optional): Filter by end year
Example:
{
"query": "cancer treatment",
"maxResults": 5,
"startYear": 2022
}
get_pubmed_paper
Get paper by PMID.
Parameters:
pmid(string, required): PubMed ID
pubmed_to_bibtex
Convert paper to BibTeX format.
Parameters:
pmid(string, required): PubMed ID
💡 Example Queries
Example 1: Multi-Source Research Query
Query: "Find recent papers on federated learning in healthcare"
Workflow:
- Search arXiv:
search_arxivwith query "federated learning healthcare", startYear: 2023 - Search Semantic Scholar:
search_semantic_scholarwith same parameters - Search PubMed:
search_pubmedwith same parameters - Combine and deduplicate results
- Sort by citation count and relevance
- Generate summary with top 5 papers
Expected Output:
- Comprehensive list of papers from all sources
- Deduplicated results
- Citation counts where available
- Links to full papers
- BibTeX citations
Example 2: Most Cited Paper
Query: "What's the most cited 2023 paper on quantum machine learning?"
Workflow:
- Call
search_semantic_scholar:{ "query": "quantum machine learning", "maxResults": 50, "startYear": 2023, "endYear": 2023 } - Sort results by
citationCount - Get detailed info with
get_semantic_scholar_paper - Generate BibTeX with
semantic_scholar_to_bibtex
Expected Output:
- Paper title and authors
- Citation count and venue
- Abstract and key findings
- BibTeX citation
- Link to paper
Example 3: Research Trend Analysis
Query: "Summarize transformer innovations after 2023"
Workflow:
- Search multiple sources for "transformer architecture" papers after 2023
- Extract key information from abstracts
- Identify common themes and methods
- Generate trend analysis
- Provide top papers with citations
Expected Output:
- Overview of key innovations
- Timeline of developments
- Most influential papers
- Citation network analysis
- Recommended reading list
Example 4: Citation Network
Query: "Find papers citing 'Attention is All You Need'"
Workflow:
- Find original paper:
search_semantic_scholarwith title - Get paper ID from results
- Call
get_paper_citationswith the paper ID - Filter by year/relevance
- Generate summary of citing papers
Expected Output:
- List of papers that cite the original work
- Citation contexts
- Related research directions
- Impact analysis
🔧 API Response Schemas
arXiv Paper Object
{
id: string; // arXiv ID (e.g., "2301.12345")
title: string;
authors: string[];
abstract: string;
published: string; // ISO date
updated: string; // ISO date
url: string; // Paper URL
pdfUrl: string; // PDF download URL
categories: string[]; // Subject categories
primaryCategory: string;
}
Semantic Scholar Paper Object
{
paperId: string;
title: string;
abstract: string | null;
year: number | null;
authors: Array<{
authorId: string;
name: string;
}>;
citationCount: number;
referenceCount: number;
influentialCitationCount: number;
url: string;
venue: string | null;
publicationDate: string | null;
}
PubMed Paper Object
{
pmid: string; // PubMed ID
title: string;
abstract: string;
authors: string[];
journal: string;
year: string;
doi: string | null;
url: string;
publicationTypes: string[];
meshTerms: string[]; // Medical Subject Headings
}
🛡️ Rate Limiting
All servers work great without API keys:
| Server | Default Rate | With API Key | Do You Need Keys? |
|---|---|---|---|
| arXiv | 3 req/sec | N/A | ❌ No - works perfectly! |
| Semantic Scholar | 1-3 req/sec | 10 req/sec | ❌ No - unless making 100+ queries/min |
| PubMed | 3 req/sec | 10 req/sec | ❌ No - unless making 100+ queries/min |
Recommendation: Start without any API keys. Only add them if you hit rate limits.
🔒 Security Notes
- No API keys needed - all servers work out of the box
- If using API keys, pass via MCP config
envsection (see optional config above) - Never commit API keys to version control
- Respect API rate limits and terms of service
📖 MCP Specification Compliance
This implementation follows the Model Context Protocol specification:
- ✅ Standard tool definition schema
- ✅ JSON-based request/response format
- ✅ Error handling with proper status codes
- ✅ Resource management and cleanup
- ✅ Stdio transport for client communication
🤝 Contributing
Contributions are welcome! Areas for improvement:
- Additional research sources (IEEE, ACM, etc.)
- Advanced filtering and ranking algorithms
- Paper recommendation system
- Citation graph visualization
- Full-text analysis capabilities
📄 License
MIT License - See LICENSE file for details
🙏 Acknowledgments
- arXiv for open access to research papers
- Semantic Scholar for citation data and API
- PubMed/NCBI for biomedical research database
- Model Context Protocol team for the MCP specification
📞 Support
For issues, questions, or contributions:
- Open an issue on GitHub
- Check API documentation for each service
- Review MCP specification for protocol details
Built with ❤️ using TypeScript and the Model Context Protocol
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。