Research Paper Ingestion MCP Server
Enables searching, downloading, and analyzing academic papers from arXiv and Semantic Scholar to extract key insights and citation metrics. It facilitates autonomous knowledge acquisition by processing research findings and integrating them into persistent AI memory systems.
README
Research Paper Ingestion MCP Server
Autonomous knowledge acquisition from academic research papers for AGI self-improvement.
Part of the Agentic System - a 24/7 autonomous AI framework with persistent memory.
Features
Paper Discovery
- arXiv Integration: Search and download from arXiv.org
- Semantic Scholar: Citation analysis and academic impact metrics
- PDF Download: Automatic paper retrieval and storage
Knowledge Extraction
- Insight Extraction: Identify key findings and contributions
- Citation Analysis: Understand paper influence and relationships
- Technique Identification: Extract novel methods and approaches
Memory Integration
- Enhanced Memory: Store extracted knowledge for AGI learning
- Structured Entities: Create searchable memory representations
- Citation Graphs: Track knowledge lineage
Installation
cd ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/agentic-system/mcp-servers/research-paper-mcp
pip install -r requirements.txt
Configuration
Add to ~/.claude.json:
{
"mcpServers": {
"research-paper-mcp": {
"command": "python3",
"args": [
"${AGENTIC_SYSTEM_PATH:-/opt/agentic}/agentic-system/mcp-servers/research-paper-mcp/server.py"
],
"env": {},
"disabled": false
}
}
}
Available Tools
search_arxiv
Search arXiv for research papers by query.
Parameters:
query(required): Search query (e.g., "recursive self-improvement AGI")max_results: Maximum results (default: 10)sort_by: Sort order - relevance, lastUpdatedDate, submittedDate
Example:
results = mcp__research-paper-mcp__search_arxiv({
"query": "meta-learning neural networks",
"max_results": 20,
"sort_by": "relevance"
})
search_semantic_scholar
Search Semantic Scholar for papers with citation metrics.
Parameters:
query(required): Search queryfields: Metadata fields to retrievelimit: Maximum results (default: 10)
Example:
results = mcp__research-paper-mcp__search_semantic_scholar({
"query": "transformer architecture attention",
"fields": ["title", "authors", "citationCount", "year"],
"limit": 15
})
download_paper
Download research paper PDF from URL.
Parameters:
url(required): PDF URLpaper_id(required): Unique identifier for filename
Example:
result = mcp__research-paper-mcp__download_paper({
"url": "https://arxiv.org/pdf/1234.5678.pdf",
"paper_id": "arxiv-1234.5678"
})
extract_insights
Extract key insights and findings from paper text.
Parameters:
paper_text(required): Full paper text or abstractfocus_areas: Optional specific areas to focus on
Example:
insights = mcp__research-paper-mcp__extract_insights({
"paper_text": paper_abstract,
"focus_areas": ["methodology", "results"]
})
analyze_citations
Analyze citation relationships and paper influence.
Parameters:
paper_id(required): Semantic Scholar or arXiv paper IDdepth: Citation graph depth 1-3 (default: 1)
Example:
analysis = mcp__research-paper-mcp__analyze_citations({
"paper_id": "arxiv:1706.03762", # "Attention Is All You Need"
"depth": 2
})
store_paper_knowledge
Store extracted knowledge in enhanced-memory for AGI learning.
Parameters:
paper_metadata(required): Paper metadata dictinsights(required): List of key insightstechniques: List of novel techniques
Example:
stored = mcp__research-paper-mcp__store_paper_knowledge({
"paper_metadata": {
"id": "arxiv-1234.5678",
"title": "Novel AGI Approach",
"authors": ["Smith", "Jones"],
"year": 2024
},
"insights": [
"Achieves 95% accuracy on benchmark",
"10x faster than previous methods"
],
"techniques": [
"Recursive meta-optimization",
"Self-modifying architectures"
]
})
Usage Patterns
Autonomous Research Workflow
# 1. Search for relevant papers
arxiv_results = mcp__research-paper-mcp__search_arxiv({
"query": "recursive self-improvement",
"max_results": 10
})
# 2. Get citation metrics
for paper in arxiv_results['papers']:
scholar_data = mcp__research-paper-mcp__search_semantic_scholar({
"query": paper['title'],
"limit": 1
})
# 3. Download high-impact papers
if scholar_data['papers'][0]['citationCount'] > 50:
pdf = mcp__research-paper-mcp__download_paper({
"url": paper['pdf_url'],
"paper_id": paper['id']
})
# 4. Extract and store insights
insights = mcp__research-paper-mcp__extract_insights({
"paper_text": paper['abstract']
})
mcp__research-paper-mcp__store_paper_knowledge({
"paper_metadata": paper,
"insights": insights['insights']
})
Citation Network Analysis
# Analyze citation influence
analysis = mcp__research-paper-mcp__analyze_citations({
"paper_id": "influential-paper-id",
"depth": 2
})
# Identify most influential papers in field
if analysis['citation_graph']['influential_citations'] > 100:
# Download and study this foundational paper
pass
Storage
- Papers Directory:
${AGENTIC_SYSTEM_PATH:-/opt/agentic}/agentic-system/research-papers/ - PDFs: Saved as
{paper_id}.pdf - Memory Integration: Via enhanced-memory-mcp create_entities
Dependencies
- arxiv: arXiv API Python wrapper
- aiohttp: Async HTTP client for Semantic Scholar API
- mcp: Model Context Protocol SDK
Future Enhancements
- PDF Text Extraction: Parse full paper text from PDFs
- Figure/Diagram Analysis: Extract visual insights
- Code Repository Links: Find implementation code
- Related Papers: Automatic discovery of connected research
- Trend Detection: Identify emerging research directions
- LLM-Powered Insight Extraction: Use GPT-4 for deeper analysis
Integration with AGI System
This MCP server closes Gap #1 from AGI_GAP_ANALYSIS.md:
Knowledge Acquisition Infrastructure ✅
- ✓ Research Paper Ingestion (arXiv + Semantic Scholar)
- ⏳ Video Transcript Processing (separate MCP)
- ⏳ GitHub Repository Analysis (future)
- ⏳ Documentation Scraping (future)
- ⏳ Knowledge Graph Integration (future)
Impact: System can now autonomously learn from the latest AI research!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。