Research Paper Ingestion MCP Server

Research Paper Ingestion MCP Server

Enables searching, downloading, and analyzing academic papers from arXiv and Semantic Scholar to extract key insights and citation metrics. It facilitates autonomous knowledge acquisition by processing research findings and integrating them into persistent AI memory systems.

Category
访问服务器

README

Research Paper Ingestion MCP Server

MCP Python License Part of Agentic System

Autonomous knowledge acquisition from academic research papers for AGI self-improvement.

Part of the Agentic System - a 24/7 autonomous AI framework with persistent memory.

Features

Paper Discovery

  • arXiv Integration: Search and download from arXiv.org
  • Semantic Scholar: Citation analysis and academic impact metrics
  • PDF Download: Automatic paper retrieval and storage

Knowledge Extraction

  • Insight Extraction: Identify key findings and contributions
  • Citation Analysis: Understand paper influence and relationships
  • Technique Identification: Extract novel methods and approaches

Memory Integration

  • Enhanced Memory: Store extracted knowledge for AGI learning
  • Structured Entities: Create searchable memory representations
  • Citation Graphs: Track knowledge lineage

Installation

cd ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/agentic-system/mcp-servers/research-paper-mcp
pip install -r requirements.txt

Configuration

Add to ~/.claude.json:

{
  "mcpServers": {
    "research-paper-mcp": {
      "command": "python3",
      "args": [
        "${AGENTIC_SYSTEM_PATH:-/opt/agentic}/agentic-system/mcp-servers/research-paper-mcp/server.py"
      ],
      "env": {},
      "disabled": false
    }
  }
}

Available Tools

search_arxiv

Search arXiv for research papers by query.

Parameters:

  • query (required): Search query (e.g., "recursive self-improvement AGI")
  • max_results: Maximum results (default: 10)
  • sort_by: Sort order - relevance, lastUpdatedDate, submittedDate

Example:

results = mcp__research-paper-mcp__search_arxiv({
    "query": "meta-learning neural networks",
    "max_results": 20,
    "sort_by": "relevance"
})

search_semantic_scholar

Search Semantic Scholar for papers with citation metrics.

Parameters:

  • query (required): Search query
  • fields: Metadata fields to retrieve
  • limit: Maximum results (default: 10)

Example:

results = mcp__research-paper-mcp__search_semantic_scholar({
    "query": "transformer architecture attention",
    "fields": ["title", "authors", "citationCount", "year"],
    "limit": 15
})

download_paper

Download research paper PDF from URL.

Parameters:

  • url (required): PDF URL
  • paper_id (required): Unique identifier for filename

Example:

result = mcp__research-paper-mcp__download_paper({
    "url": "https://arxiv.org/pdf/1234.5678.pdf",
    "paper_id": "arxiv-1234.5678"
})

extract_insights

Extract key insights and findings from paper text.

Parameters:

  • paper_text (required): Full paper text or abstract
  • focus_areas: Optional specific areas to focus on

Example:

insights = mcp__research-paper-mcp__extract_insights({
    "paper_text": paper_abstract,
    "focus_areas": ["methodology", "results"]
})

analyze_citations

Analyze citation relationships and paper influence.

Parameters:

  • paper_id (required): Semantic Scholar or arXiv paper ID
  • depth: Citation graph depth 1-3 (default: 1)

Example:

analysis = mcp__research-paper-mcp__analyze_citations({
    "paper_id": "arxiv:1706.03762",  # "Attention Is All You Need"
    "depth": 2
})

store_paper_knowledge

Store extracted knowledge in enhanced-memory for AGI learning.

Parameters:

  • paper_metadata (required): Paper metadata dict
  • insights (required): List of key insights
  • techniques: List of novel techniques

Example:

stored = mcp__research-paper-mcp__store_paper_knowledge({
    "paper_metadata": {
        "id": "arxiv-1234.5678",
        "title": "Novel AGI Approach",
        "authors": ["Smith", "Jones"],
        "year": 2024
    },
    "insights": [
        "Achieves 95% accuracy on benchmark",
        "10x faster than previous methods"
    ],
    "techniques": [
        "Recursive meta-optimization",
        "Self-modifying architectures"
    ]
})

Usage Patterns

Autonomous Research Workflow

# 1. Search for relevant papers
arxiv_results = mcp__research-paper-mcp__search_arxiv({
    "query": "recursive self-improvement",
    "max_results": 10
})

# 2. Get citation metrics
for paper in arxiv_results['papers']:
    scholar_data = mcp__research-paper-mcp__search_semantic_scholar({
        "query": paper['title'],
        "limit": 1
    })

    # 3. Download high-impact papers
    if scholar_data['papers'][0]['citationCount'] > 50:
        pdf = mcp__research-paper-mcp__download_paper({
            "url": paper['pdf_url'],
            "paper_id": paper['id']
        })

        # 4. Extract and store insights
        insights = mcp__research-paper-mcp__extract_insights({
            "paper_text": paper['abstract']
        })

        mcp__research-paper-mcp__store_paper_knowledge({
            "paper_metadata": paper,
            "insights": insights['insights']
        })

Citation Network Analysis

# Analyze citation influence
analysis = mcp__research-paper-mcp__analyze_citations({
    "paper_id": "influential-paper-id",
    "depth": 2
})

# Identify most influential papers in field
if analysis['citation_graph']['influential_citations'] > 100:
    # Download and study this foundational paper
    pass

Storage

  • Papers Directory: ${AGENTIC_SYSTEM_PATH:-/opt/agentic}/agentic-system/research-papers/
  • PDFs: Saved as {paper_id}.pdf
  • Memory Integration: Via enhanced-memory-mcp create_entities

Dependencies

  • arxiv: arXiv API Python wrapper
  • aiohttp: Async HTTP client for Semantic Scholar API
  • mcp: Model Context Protocol SDK

Future Enhancements

  1. PDF Text Extraction: Parse full paper text from PDFs
  2. Figure/Diagram Analysis: Extract visual insights
  3. Code Repository Links: Find implementation code
  4. Related Papers: Automatic discovery of connected research
  5. Trend Detection: Identify emerging research directions
  6. LLM-Powered Insight Extraction: Use GPT-4 for deeper analysis

Integration with AGI System

This MCP server closes Gap #1 from AGI_GAP_ANALYSIS.md:

Knowledge Acquisition Infrastructure

  • ✓ Research Paper Ingestion (arXiv + Semantic Scholar)
  • ⏳ Video Transcript Processing (separate MCP)
  • ⏳ GitHub Repository Analysis (future)
  • ⏳ Documentation Scraping (future)
  • ⏳ Knowledge Graph Integration (future)

Impact: System can now autonomously learn from the latest AI research!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选