Research Tracker MCP Server
Enables discovery and analysis of research ecosystems by extracting metadata from paper URLs, GitHub repositories, and research names. Automatically finds related papers, code repositories, models, datasets, and authors across platforms like arXiv, HuggingFace, and GitHub.
README
Research Tracker MCP Server
A Model Context Protocol (MCP) server that provides research inference utilities. This server extracts research metadata from paper URLs, repository links, or research names using web scraping and API integration.
Features
- Author inference from papers and repositories
- Cross-platform resource discovery (papers, code, models, datasets)
- Research metadata extraction (names, dates, licenses)
- URL classification and relationship mapping
- Comprehensive research ecosystem analysis
- Rate limiting to prevent API abuse
- Request caching with TTL for performance
- Error handling with typed exceptions
- Security validation for all URLs
- Retry logic with exponential backoff
Frontend
The project includes a modern web interface built with Flask and vanilla JavaScript:
- Clean Design: Minimalist black and white theme with soft green accents
- Real-time Discovery: Live logging of the discovery process with scrollable output
- Responsive Layout: Grid-based design that adapts to different screen sizes
- Interactive Elements: Example URL buttons for quick testing
- Progress Tracking: Visual progress indicators and status updates
- Resource Display: Organized grid showing discovered papers, code, models, datasets, and demo spaces
UI Components
- Input Section: URL input field with discover button
- Discovery Log: Real-time scrolling log of the discovery process
- Results Grid: Clean display of discovered resources
- Example URLs: Pre-configured test cases for demonstration
- Status Indicators: Progress bars and status messages
Available MCP Tools
All functions are optimized for MCP usage with clear type hints and docstrings:
infer_authors- Extract author names from papers and repositoriesinfer_paper_url- Find associated research paper URLsinfer_code_repository- Discover code repository linksinfer_research_name- Extract research project namesclassify_research_url- Classify URL types (paper/code/model/etc.)infer_publication_date- Extract publication datesinfer_model- Find associated HuggingFace modelsinfer_dataset- Find associated HuggingFace datasetsinfer_space- Find associated HuggingFace spacesinfer_license- Extract license informationfind_research_relationships- Comprehensive research ecosystem analysis
Input Support
- arXiv paper URLs (https://arxiv.org/abs/...)
- HuggingFace paper URLs (https://huggingface.co/papers/...)
- GitHub repository URLs (https://github.com/...)
- HuggingFace model/dataset/space URLs
- Research paper titles and project names
- Project page URLs (github.io)
MCP Best Practices Implementation
This server follows official MCP best practices:
- Security: URL validation, domain allowlisting, input sanitization
- Performance: Request caching, rate limiting, connection pooling
- Reliability: Retry logic, graceful error handling, timeout management
- Documentation: Comprehensive docstrings with examples for all tools
- Error Handling: Typed exceptions for different failure scenarios
Environment Variables
HF_TOKEN- Hugging Face API token (required)GITHUB_AUTH- GitHub API token (optional, enables enhanced GitHub integration)
Usage
The server automatically launches as an MCP server when run. All inference functions are exposed as MCP tools for integration with Claude and other AI assistants.
Example
Test with the 3D Arena paper:
Input: https://arxiv.org/abs/2506.18787
Finds: dataset (dylanebert/iso3d), space (dylanebert/LGM-tiny), and more
Rate Limits
- 30 requests per minute per tool
- Automatic caching reduces duplicate requests
- Graceful error messages when limits exceeded
Error Handling
The server provides clear error messages:
ValidationError: Invalid or malicious URLsExternalAPIError: External service failuresMCPError: Rate limiting or other MCP issues
Installation
- Clone the repository
- Install dependencies:
pip install -r requirements.txt - Set environment variables
- Run:
python app.py
Requirements
- Python 3.8+
- See requirements.txt for dependencies
Running the Application
MCP Server Only
python app.py
Web Interface
python flask_app.py
The web interface will be available at http://localhost:5000
Gradio Interface (Alternative)
python ui.py
Project Structure
app.py- Main MCP server entry pointflask_app.py- Flask web interfaceui.py- Gradio alternative interfacemcp_tools.py- MCP tool implementationsinference.py- Core inference logicdiscovery.py- Multi-round discovery functionsstatic/- CSS and JavaScript filestemplates/- HTML templatesutils.py- Utility functions
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。