Resume Analysis MCP Server

Resume Analysis MCP Server

An intelligent server that processes and evaluates resumes by extracting structured data, analyzing skills and experience, scoring candidates against job requirements, and generating detailed reports.

Category
访问服务器

README

Resume MCP Agent

An intelligent Model Context Protocol (MCP) server for AI-powered resume analysis and sorting. This system helps HR professionals and recruiters efficiently analyze resumes and match them with job descriptions using advanced NLP and machine learning techniques.

Features

  • Resume Parsing: Extract text from PDF and DOCX resume files
  • Job Description Matching: Intelligent matching between resumes and job requirements
  • Skills Analysis: Extract and analyze technical and soft skills
  • Experience Evaluation: Assess work experience relevance and seniority
  • Education Matching: Evaluate educational background against job requirements
  • Scoring System: Comprehensive scoring algorithm for resume ranking
  • Web Interface: Modern web UI for easy interaction
  • MCP Integration: Full Model Context Protocol support for AI agents

Technology Stack

  • Backend: Python with FastAPI
  • MCP: Model Context Protocol server implementation
  • AI/ML: Google's ADK, spaCy, scikit-learn, transformers
  • Document Processing: PyPDF2, python-docx
  • Web UI: FastAPI with Jinja2 templates
  • Environment: UV for dependency management and virtual environments

Setup

Prerequisites

  • Python 3.9 or higher
  • UV package manager

Installation

  1. Clone the repository:
git clone <repository-url>
cd resume-mcp
  1. Create and activate virtual environment with UV:
uv venv
# On Windows
.venv\Scripts\activate
# On Unix/macOS
source .venv/bin/activate
  1. Install dependencies:
uv pip install -e .
  1. Download spaCy language model:
python -m spacy download en_core_web_sm
  1. Set up Google AI credentials (optional):
export GOOGLE_API_KEY="your-api-key"

Usage

Start the MCP Server

resume-mcp

Web Interface

Navigate to http://localhost:8000 to access the web interface.

API Endpoints

  • POST /analyze/resume - Analyze a single resume
  • POST /match/job - Match resumes with job description
  • GET /resumes - List all analyzed resumes
  • GET /jobs - List all job descriptions

Project Structure

resume-mcp/
├── src/
│   └── resume_mcp/
│       ├── __init__.py
│       ├── server.py              # MCP server implementation
│       ├── models/                # Data models
│       ├── analyzers/             # Resume and job analysis
│       ├── matching/              # Matching algorithms
│       ├── storage/               # Data storage
│       ├── web/                   # Web interface
│       └── utils/                 # Utility functions
├── templates/                     # HTML templates
├── static/                       # Static assets
├── tests/                        # Test suite
├── pyproject.toml                # Project configuration
└── README.md                     # This file

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选