Resume Gap Analyzer

Resume Gap Analyzer

Analyzes resumes against job descriptions to identify missing skills, keywords, and improvement opportunities using AI. Provides structured feedback including gap analysis, ATS optimization suggestions, and actionable recommendations to improve job application success.

Category
访问服务器

README

Resume Gap Analyzer MCP Server

An MCP (Model Context Protocol) server that analyzes resumes against job descriptions to identify gaps, missing keywords, and improvement opportunities using OpenAI's GPT-4o-mini.

https://www.youtube.com/watch?v=JnteMtI5nCs

mcp_front

Features

  • Gap Analysis: Identifies missing skills, experience, certifications, and keywords
  • Prioritized Recommendations: Actionable feedback organized by impact
  • ATS Optimization: Ensures resume compatibility with Applicant Tracking Systems
  • Strength Mapping: Highlights existing qualifications to emphasize
  • Sample Resume Resources: Test with pre-loaded sample resumes

Setup

Prerequisites

Installation

  1. Clone the repository:
git clone <repository-url>
cd gapsinmyresume
  1. Create and activate a virtual environment:
python3 -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Set your OpenAI API key:
# Copy the example env file
cp .env.example .env

# Edit .env and add your actual API key
# OPENAI_API_KEY=sk-your-actual-key-here

Configuration for Claude Desktop

To use this MCP server with Claude Desktop, add it to your config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "resume-gap-analyzer": {
      "command": "/absolute/path/to/gapsinmyresume/.venv/bin/python",
      "args": ["/absolute/path/to/gapsinmyresume/server.py"]
    }
  }
}

Important: Replace /absolute/path/to/gapsinmyresume with your actual path. Use the .venv/bin/python from the virtual environment you created.

After updating the config, restart Claude Desktop for changes to take effect.

Usage

Option 1: Via Claude Desktop (Recommended)

Once configured, simply ask Claude in the desktop app:

"Analyze my resume at /Users/you/Documents/resume.docx against this job description:

[paste full job description here]"

Claude will automatically use the analyze_resume_gaps tool.

Option 2: Direct CLI Testing

Run the included test script to test without Claude Desktop:

# Make sure your .env file has OPENAI_API_KEY set
source .venv/bin/activate
python test_cli.py

This will analyze the first resume in sample-resumes/ against a sample job description.

Option 3: MCP Server Directly

Start the MCP server (for debugging or integration):

source .venv/bin/activate
python server.py

The server runs in stdio mode and accepts MCP protocol messages.

Tool Parameters

analyze_resume_gaps

  • resume_path (string, required): Absolute path to resume file (.docx)
  • job_description (string, required): Full text of the job posting

Example in Claude Desktop:

"Analyze /Users/you/Documents/resume.docx for the Senior Software Engineer role at XYZ Corp.

Job description:
We are seeking a Senior Software Engineer with 5+ years of experience in Python, AWS, and React..."

Output Format

The tool returns structured JSON with:

{
  "overall_match_score": 75,
  "critical_gaps": [
    {
      "category": "hard_skill",
      "gap": "AWS certification missing",
      "importance": "high",
      "recommendation": "Obtain AWS Solutions Architect certification",
      "keywords_to_add": ["AWS", "cloud architecture", "EC2"]
    }
  ],
  "missing_keywords": {
    "technical": ["Kubernetes", "Docker", "CI/CD"],
    "soft_skills": ["leadership", "mentoring"],
    "industry_terms": ["agile", "scrum"]
  },
  "experience_analysis": {
    "required_years": 5,
    "resume_shows_years": 3,
    "gap_exists": true,
    "notes": "Resume shows 3 years but requires 5+"
  },
  "strengths_to_highlight": [
    {
      "strength": "Python expertise",
      "relevance": "Primary language for the role",
      "current_prominence": "medium",
      "recommendation": "Move Python projects to top of experience section"
    }
  ],
  "formatting_suggestions": [
    {
      "issue": "No clear metrics in achievements",
      "impact": "both",
      "fix": "Add quantifiable results (e.g., 'Improved performance by 40%')"
    }
  ],
  "content_improvements": [
    {
      "section": "Professional Summary",
      "current_state": "Generic software engineer summary",
      "suggested_change": "Emphasize Python, AWS, and senior-level leadership",
      "example": "Senior Software Engineer with 3+ years specializing in Python-based cloud solutions...",
      "priority": "high"
    }
  ],
  "quick_wins": [
    "Add 'AWS' keyword to technical skills section",
    "Quantify achievement in Project X with metrics",
    "Reorder skills to match job description priority"
  ],
  "summary": "Strong Python foundation but needs more AWS experience. Highlight existing cloud projects and add relevant certifications. Focus on quantifying achievements."
}

Development

# Run the server directly (for testing)
python server.py

# Format code
black server.py prompts.py

# Lint code
ruff check .

File Structure

gapsinmyresume/
├── server.py                           # Main FastMCP server implementation
├── prompts.py                          # System prompts and Pydantic models
├── test_cli.py                         # CLI test script
├── sample-resumes/                     # Place sample .docx files here
├── sample-job-descriptions/            # Example job descriptions
│   └── senior-software-engineer.txt
├── pyproject.toml                      # Python project configuration
├── requirements.txt                    # Python dependencies
├── .env.example                        # Environment variables template
├── .env                                # Your API keys (git ignored)
├── README.md                           # This file
└── SETUP.md                            # Additional setup notes

How It Works

  1. Document Parsing: Extracts text from DOCX files using python-docx
  2. LLM Analysis: Sends resume and job description to OpenAI gpt-4o-mini
  3. Structured Output: Uses Pydantic models with OpenAI's structured output API
  4. MCP Integration: FastMCP exposes analysis as a tool callable from Claude Desktop

Tips for Best Results

  • Provide complete job descriptions (not just titles)
  • Ensure resume files are properly formatted .docx files
  • Include both required and preferred qualifications in job description
  • Use the quick wins section for immediate, high-impact changes
  • Place test resumes in sample-resumes/ to use the resource feature

Quick Start Example

After setup, try this:

# 1. Activate virtual environment
source .venv/bin/activate

# 2. Run the test script (uses sample resume + sample job description)
python test_cli.py

# 3. Or use with Claude Desktop
# Just ask: "Analyze my resume at /path/to/resume.docx against this job description: [paste description]"

Testing with Sample Resumes

  1. Add .docx files to the sample-resumes/ directory
  2. Sample job descriptions are in sample-job-descriptions/
  3. Run python test_cli.py for quick testing
  4. In Claude Desktop, reference your resume files by absolute path

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选