Reviewer MCP

Reviewer MCP

An MCP service that provides AI-powered development workflow tools including specification generation, code review, and project management with support for both OpenAI and Ollama models.

Category
访问服务器

README

Reviewer MCP

An MCP (Model Context Protocol) service that provides AI-powered development workflow tools. It supports multiple AI providers (OpenAI and Ollama) and offers standardized tools for specification generation, code review, and project management.

Features

  • Specification Generation: Create detailed technical specifications from prompts
  • Specification Review: Review specifications for completeness and provide critical feedback
  • Code Review: Analyze code changes with focus on security, performance, style, or logic
  • Test Runner: Execute tests with LLM-friendly formatted output
  • Linter: Run linters with structured output formatting
  • Pluggable AI Providers: Support for both OpenAI and Ollama (local models)

Installation

npm install
npm run build

Configuration

Environment Variables

Create a .env file based on .env.example:

# AI Provider Configuration
AI_PROVIDER=openai  # Options: openai, ollama

# OpenAI Configuration
OPENAI_API_KEY=your_api_key_here
OPENAI_MODEL=o1-preview

# Ollama Configuration (for local models)
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=llama2

Project Configuration

Create a .reviewer.json file in your project root to customize commands:

{
  "testCommand": "npm test",
  "lintCommand": "npm run lint",
  "buildCommand": "npm run build",
  "aiProvider": "ollama",
  "ollamaModel": "codellama"
}

Using with Claude Desktop

Add the following to your Claude Desktop configuration:

{
  "mcpServers": {
    "reviewer": {
      "command": "node",
      "args": ["/path/to/reviewer-mcp/dist/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-api-key-here"
      }
    }
  }
}

Using with Ollama

  1. Install Ollama: https://ollama.ai
  2. Pull a model: ollama pull llama2 or ollama pull codellama
  3. Set AI_PROVIDER=ollama in your .env file
  4. The service will use your local Ollama instance

Available Tools

generate_spec

Generate a technical specification document.

Parameters:

  • prompt (required): Description of what specification to generate
  • context (optional): Additional context or requirements
  • format (optional): Output format - "markdown" or "structured"

review_spec

Review a specification for completeness and provide critical feedback.

Parameters:

  • spec (required): The specification document to review
  • focusAreas (optional): Array of specific areas to focus the review on

review_code

Review code changes and provide feedback.

Parameters:

  • diff (required): Git diff or code changes to review
  • context (optional): Context about the changes
  • reviewType (optional): Type of review - "security", "performance", "style", "logic", or "all"

run_tests

Run standardized tests for the project.

Parameters:

  • testCommand (optional): Test command to run (defaults to configured command)
  • pattern (optional): Test file pattern to match
  • watch (optional): Run tests in watch mode

run_linter

Run standardized linter for the project.

Parameters:

  • lintCommand (optional): Lint command to run (defaults to configured command)
  • fix (optional): Attempt to fix issues automatically
  • files (optional): Array of specific files to lint

Development

# Run in development mode
npm run dev

# Run tests
npm test

# Run unit tests only
npm run test:unit

# Run integration tests (requires Ollama)
npm run test:integration

# Type checking
npm run typecheck

# Linting
npm run lint

End-to-End Testing

The project includes a comprehensive e2e test that validates the full workflow using a real Ollama instance:

  1. Install and start Ollama: https://ollama.ai
  2. Pull a model: ollama pull llama2
  3. Run the test: npm run test:e2e

The e2e test demonstrates:

  • Specification generation
  • Specification review
  • Code creation
  • Code review
  • Linting
  • Test execution

All using real AI responses from your local Ollama instance.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选