Reviewer MCP
An MCP service that provides AI-powered development workflow tools including specification generation, code review, and project management with support for both OpenAI and Ollama models.
README
Reviewer MCP
An MCP (Model Context Protocol) service that provides AI-powered development workflow tools. It supports multiple AI providers (OpenAI and Ollama) and offers standardized tools for specification generation, code review, and project management.
Features
- Specification Generation: Create detailed technical specifications from prompts
- Specification Review: Review specifications for completeness and provide critical feedback
- Code Review: Analyze code changes with focus on security, performance, style, or logic
- Test Runner: Execute tests with LLM-friendly formatted output
- Linter: Run linters with structured output formatting
- Pluggable AI Providers: Support for both OpenAI and Ollama (local models)
Installation
npm install
npm run build
Configuration
Environment Variables
Create a .env file based on .env.example:
# AI Provider Configuration
AI_PROVIDER=openai # Options: openai, ollama
# OpenAI Configuration
OPENAI_API_KEY=your_api_key_here
OPENAI_MODEL=o1-preview
# Ollama Configuration (for local models)
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=llama2
Project Configuration
Create a .reviewer.json file in your project root to customize commands:
{
"testCommand": "npm test",
"lintCommand": "npm run lint",
"buildCommand": "npm run build",
"aiProvider": "ollama",
"ollamaModel": "codellama"
}
Using with Claude Desktop
Add the following to your Claude Desktop configuration:
{
"mcpServers": {
"reviewer": {
"command": "node",
"args": ["/path/to/reviewer-mcp/dist/index.js"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
}
}
Using with Ollama
- Install Ollama: https://ollama.ai
- Pull a model:
ollama pull llama2orollama pull codellama - Set
AI_PROVIDER=ollamain your.envfile - The service will use your local Ollama instance
Available Tools
generate_spec
Generate a technical specification document.
Parameters:
prompt(required): Description of what specification to generatecontext(optional): Additional context or requirementsformat(optional): Output format - "markdown" or "structured"
review_spec
Review a specification for completeness and provide critical feedback.
Parameters:
spec(required): The specification document to reviewfocusAreas(optional): Array of specific areas to focus the review on
review_code
Review code changes and provide feedback.
Parameters:
diff(required): Git diff or code changes to reviewcontext(optional): Context about the changesreviewType(optional): Type of review - "security", "performance", "style", "logic", or "all"
run_tests
Run standardized tests for the project.
Parameters:
testCommand(optional): Test command to run (defaults to configured command)pattern(optional): Test file pattern to matchwatch(optional): Run tests in watch mode
run_linter
Run standardized linter for the project.
Parameters:
lintCommand(optional): Lint command to run (defaults to configured command)fix(optional): Attempt to fix issues automaticallyfiles(optional): Array of specific files to lint
Development
# Run in development mode
npm run dev
# Run tests
npm test
# Run unit tests only
npm run test:unit
# Run integration tests (requires Ollama)
npm run test:integration
# Type checking
npm run typecheck
# Linting
npm run lint
End-to-End Testing
The project includes a comprehensive e2e test that validates the full workflow using a real Ollama instance:
- Install and start Ollama: https://ollama.ai
- Pull a model:
ollama pull llama2 - Run the test:
npm run test:e2e
The e2e test demonstrates:
- Specification generation
- Specification review
- Code creation
- Code review
- Linting
- Test execution
All using real AI responses from your local Ollama instance.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。