
ReviewWebsite MCP Server
MCP server that connects AI assistants to ReviewWebsite.com API for creating and managing website reviews, extracting data, converting URLs to markdown, and interacting with web content.
Tools
extract_data
Extract structured data from a URL using AI via ReviewWebsite API.
extract_data_multiple
Extract structured data from multiple URLs using AI via ReviewWebsite API.
scrape_url
Scrape a URL using ReviewWebsite API.
extract_links
Extract links from a URL using ReviewWebsite API.
summarize_url
Summarize a URL using AI via ReviewWebsite API.
summarize_multiple_urls
Summarize multiple URLs using AI via ReviewWebsite API.
summarize_website
Summarize a website (multiple pages) using AI via ReviewWebsite API.
convert_to_markdown
Convert a URL to Markdown using AI via ReviewWebsite API.
convert_multiple_to_markdown
Convert multiple URLs to Markdown using AI via ReviewWebsite API.
README
ReviewWebsite.com - MCP Server
This project provides a Model Context Protocol (MCP) server that connects AI assistants to ReviewWebsite.com API to create and manage website reviews, extract data, convert URLs to markdown, and more.
<a href="https://glama.ai/mcp/servers/@mrgoonie/reviewwebsite-mcp-server"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@mrgoonie/reviewwebsite-mcp-server/badge" alt="ReviewWebsite Server MCP server" /> </a>
Available Features
- [x] Create, read, update, and delete website reviews
- [x] Get available AI models
- [x] Convert URLs to Markdown using AI
- [x] Extract structured data from URLs using AI
- [x] Scrape URLs and extract content
- [x] Extract links from websites
- [x] Summarize URLs and websites using AI
- [x] Customize AI models and parameters
- [x] Control wait behavior and timing
ReviewWeb.site
- Website
- API Docs
- API Swagger Config
- Create your API key here
Supported Transports
- [x] "stdio" transport - Default transport for CLI usage
- [x] "Streamable HTTP" transport - For web-based clients
- [ ] Implement auth ("Authorization" headers with
Bearer <token>
)
- [ ] Implement auth ("Authorization" headers with
- [ ]
"sse" transport(Deprecated) - [ ] Write tests
How to use
CLI
# Get available AI models
npm run dev:cli -- get-ai-models --api-key "your-api-key"
# Create a new review
npm run dev:cli -- create-review --url "https://example.com" --instructions "Review this website" --api-key "your-api-key"
# Get a specific review by ID
npm run dev:cli -- get-review --review-id "review-id" --api-key "your-api-key"
# List all reviews
npm run dev:cli -- list-reviews --page 1 --limit 10 --api-key "your-api-key"
# Update a review
npm run dev:cli -- update-review --review-id "review-id" --url "https://example.com" --instructions "Updated instructions" --api-key "your-api-key"
# Delete a review
npm run dev:cli -- delete-review --review-id "review-id" --api-key "your-api-key"
# Convert URL to Markdown
npm run dev:cli -- convert-to-markdown --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"
# Extract structured data from URL
npm run dev:cli -- extract-data --url "https://example.com" --instructions "Extract product information" --api-key "your-api-key"
# Scrape URL
npm run dev:cli -- scrape-url --url "https://example.com" --api-key "your-api-key"
# Extract links from URL
npm run dev:cli -- extract-links --url "https://example.com" --type "all" --api-key "your-api-key"
# Summarize URL
npm run dev:cli -- summarize-url --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"
MCP Setup
For local configuration with stdio transport:
{
"mcpServers": {
"reviewwebsite": {
"command": "node",
"args": ["/path/to/reviewwebsite-mcp-server/dist/index.js"],
"transportType": "stdio"
}
}
}
For remote HTTP configuration:
{
"mcpServers": {
"reviewwebsite": {
"type": "http",
"url": "http://localhost:8080/mcp"
}
}
}
Environment Variables for HTTP Transport:
You can configure the HTTP server using these environment variables:
MCP_HTTP_HOST
: The host to bind to (default:127.0.0.1
)MCP_HTTP_PORT
: The port to listen on (default:8080
)MCP_HTTP_PATH
: The endpoint path (default:/mcp
)
Source Code Overview
What is MCP?
Model Context Protocol (MCP) is an open standard that allows AI systems to securely and contextually connect with external tools and data sources.
This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.
Why Use This Boilerplate?
-
Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clear separation between CLI, tools, controllers, and services.
-
Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability.
-
Working Example: Includes a fully implemented IP lookup tool demonstrating the complete pattern from CLI to API integration.
-
Testing Framework: Comes with testing infrastructure for both unit and CLI integration tests, including coverage reporting.
-
Development Tooling: Includes ESLint, Prettier, TypeScript, and other quality tools preconfigured for MCP server development.
Getting Started
Prerequisites
- Node.js (>=18.x): Download
- Git: For version control
Step 1: Clone and Install
# Clone the repository
git clone https://github.com/mrgoonie/reviewwebsite-mcp-server.git
cd reviewwebsite-mcp-server
# Install dependencies
npm install
Step 2: Run Development Server
Start the server in development mode with stdio transport (default):
npm run dev:server
Or with the Streamable HTTP transport:
npm run dev:server:http
This starts the MCP server with hot-reloading and enables the MCP Inspector at http://localhost:5173.
⚙️ Proxy server listening on port 6277 🔍 MCP Inspector is up and running at http://127.0.0.1:6274
When using HTTP transport, the server will be available at http://127.0.0.1:8080/mcp by default.
Step 3: Test the ReviewWebsite API Tools
Use the ReviewWebsite API tools via CLI:
# Get available AI models
npm run dev:cli -- get-ai-models --api-key "your-api-key"
# Create a review
npm run dev:cli -- create-review --url "https://example.com" --instructions "Review this website" --api-key "your-api-key"
# Convert URL to Markdown
npm run dev:cli -- convert-to-markdown --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"
Architecture
This boilerplate follows a clean, layered architecture pattern that separates concerns and promotes maintainability.
Project Structure
src/
├── cli/ # Command-line interfaces
├── controllers/ # Business logic
├── resources/ # MCP resources: expose data and content from your servers to LLMs
├── services/ # External API interactions
├── tools/ # MCP tool definitions
├── types/ # Type definitions
├── utils/ # Shared utilities
└── index.ts # Entry point
Layers and Responsibilities
CLI Layer (src/cli/*.cli.ts
)
- Purpose: Define command-line interfaces that parse arguments and call controllers
- Naming: Files should be named
<feature>.cli.ts
- Testing: CLI integration tests in
<feature>.cli.test.ts
Tools Layer (src/tools/*.tool.ts
)
- Purpose: Define MCP tools with schemas and descriptions for AI assistants
- Naming: Files should be named
<feature>.tool.ts
with types in<feature>.types.ts
- Pattern: Each tool should use zod for argument validation
Controllers Layer (src/controllers/*.controller.ts
)
- Purpose: Implement business logic, handle errors, and format responses
- Naming: Files should be named
<feature>.controller.ts
- Pattern: Should return standardized
ControllerResponse
objects
Services Layer (src/services/*.service.ts
)
- Purpose: Interact with external APIs or data sources
- Naming: Files should be named
<feature>.service.ts
- Pattern: Pure API interactions with minimal logic
Utils Layer (src/utils/*.util.ts
)
- Purpose: Provide shared functionality across the application
- Key Utils:
logger.util.ts
: Structured loggingerror.util.ts
: Error handling and standardizationformatter.util.ts
: Markdown formatting helpers
Development Guide
Development Scripts
# Start server in development mode (hot-reload & inspector)
npm run dev:server
# Run CLI in development mode
npm run dev:cli -- [command] [args]
# Build the project
npm run build
# Start server in production mode
npm run start:server
# Run CLI in production mode
npm run start:cli -- [command] [args]
Testing
# Run all tests
npm test
# Run specific tests
npm test -- src/path/to/test.ts
# Generate test coverage report
npm run test:coverage
Code Quality
# Lint code
npm run lint
# Format code with Prettier
npm run format
# Check types
npm run typecheck
Building Custom Tools
Follow these steps to add your own tools to the server:
1. Define Service Layer
Create a new service in src/services/
to interact with your external API:
// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';
const logger = Logger.forContext('services/example.service.ts');
export async function getData(param: string): Promise<any> {
logger.debug('Getting data', { param });
// API interaction code here
return { result: 'example data' };
}
2. Create Controller
Add a controller in src/controllers/
to handle business logic:
// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';
const logger = Logger.forContext('controllers/example.controller.ts');
export interface GetDataOptions {
param?: string;
}
export async function getData(
options: GetDataOptions = {},
): Promise<ControllerResponse> {
try {
logger.debug('Getting data with options', options);
const data = await exampleService.getData(options.param || 'default');
const content = formatMarkdown(data);
return { content };
} catch (error) {
throw handleControllerError(error, {
entityType: 'ExampleData',
operation: 'getData',
source: 'controllers/example.controller.ts',
});
}
}
3. Implement MCP Tool
Create a tool definition in src/tools/
:
// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';
const logger = Logger.forContext('tools/example.tool.ts');
const GetDataArgs = z.object({
param: z.string().optional().describe('Optional parameter'),
});
type GetDataArgsType = z.infer<typeof GetDataArgs>;
async function handleGetData(args: GetDataArgsType) {
try {
logger.debug('Tool get_data called', args);
const result = await exampleController.getData({
param: args.param,
});
return {
content: [{ type: 'text' as const, text: result.content }],
};
} catch (error) {
logger.error('Tool get_data failed', error);
return formatErrorForMcpTool(error);
}
}
export function register(server: McpServer) {
server.tool(
'get_data',
`Gets data from the example API, optionally using \`param\`.
Use this to fetch example data. Returns formatted data as Markdown.`,
GetDataArgs.shape,
handleGetData,
);
}
4. Add CLI Support
Create a CLI command in src/cli/
:
// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';
const logger = Logger.forContext('cli/example.cli.ts');
program
.command('get-data')
.description('Get example data')
.option('--param <value>', 'Optional parameter')
.action(async (options) => {
try {
logger.debug('CLI get-data called', options);
const result = await exampleController.getData({
param: options.param,
});
console.log(result.content);
} catch (error) {
handleCliError(error);
}
});
5. Register Components
Update the entry points to register your new components:
// In src/cli/index.ts
import '../cli/example.cli.js';
// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);
Debugging Tools
MCP Inspector
Access the visual MCP Inspector to test your tools and view request/response details:
- Run
npm run dev:server
- Open http://localhost:5173 in your browser
- Test your tools and view logs directly in the UI
Server Logs
Enable debug logs for development:
# Set environment variable
DEBUG=true npm run dev:server
# Or configure in ~/.mcp/configs.json
Publishing Your MCP Server
When ready to publish your custom MCP server:
- Update package.json with your details
- Update README.md with your tool documentation
- Build the project:
npm run build
- Test the production build:
npm run start:server
- Publish to npm:
npm publish
License
{
"reviewwebsite": {
"environments": {
"DEBUG": "true",
"REVIEWWEBSITE_API_KEY": "your-api-key-here"
}
}
}
Note: For backward compatibility, the server will also recognize configurations under the full package name (reviewwebsite-mcp-server
) or the unscoped package name (reviewwebsite-mcp-server
) if the reviewwebsite
key is not found. However, using the short reviewwebsite
key is recommended for new configurations.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。