ReviewWebsite MCP Server

ReviewWebsite MCP Server

MCP server that connects AI assistants to ReviewWebsite.com API for creating and managing website reviews, extracting data, converting URLs to markdown, and interacting with web content.

Category
访问服务器

Tools

extract_data

Extract structured data from a URL using AI via ReviewWebsite API.

extract_data_multiple

Extract structured data from multiple URLs using AI via ReviewWebsite API.

scrape_url

Scrape a URL using ReviewWebsite API.

extract_links

Extract links from a URL using ReviewWebsite API.

summarize_url

Summarize a URL using AI via ReviewWebsite API.

summarize_multiple_urls

Summarize multiple URLs using AI via ReviewWebsite API.

summarize_website

Summarize a website (multiple pages) using AI via ReviewWebsite API.

convert_to_markdown

Convert a URL to Markdown using AI via ReviewWebsite API.

convert_multiple_to_markdown

Convert multiple URLs to Markdown using AI via ReviewWebsite API.

README

ReviewWebsite.com - MCP Server

This project provides a Model Context Protocol (MCP) server that connects AI assistants to ReviewWebsite.com API to create and manage website reviews, extract data, convert URLs to markdown, and more.

<a href="https://glama.ai/mcp/servers/@mrgoonie/reviewwebsite-mcp-server"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@mrgoonie/reviewwebsite-mcp-server/badge" alt="ReviewWebsite Server MCP server" /> </a>

Available Features

  • [x] Create, read, update, and delete website reviews
  • [x] Get available AI models
  • [x] Convert URLs to Markdown using AI
  • [x] Extract structured data from URLs using AI
  • [x] Scrape URLs and extract content
  • [x] Extract links from websites
  • [x] Summarize URLs and websites using AI
  • [x] Customize AI models and parameters
  • [x] Control wait behavior and timing

ReviewWeb.site

Supported Transports

  • [x] "stdio" transport - Default transport for CLI usage
  • [x] "Streamable HTTP" transport - For web-based clients
    • [ ] Implement auth ("Authorization" headers with Bearer <token>)
  • [ ] "sse" transport (Deprecated)
  • [ ] Write tests

How to use

CLI

# Get available AI models
npm run dev:cli -- get-ai-models --api-key "your-api-key"

# Create a new review
npm run dev:cli -- create-review --url "https://example.com" --instructions "Review this website" --api-key "your-api-key"

# Get a specific review by ID
npm run dev:cli -- get-review --review-id "review-id" --api-key "your-api-key"

# List all reviews
npm run dev:cli -- list-reviews --page 1 --limit 10 --api-key "your-api-key"

# Update a review
npm run dev:cli -- update-review --review-id "review-id" --url "https://example.com" --instructions "Updated instructions" --api-key "your-api-key"

# Delete a review
npm run dev:cli -- delete-review --review-id "review-id" --api-key "your-api-key"

# Convert URL to Markdown
npm run dev:cli -- convert-to-markdown --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"

# Extract structured data from URL
npm run dev:cli -- extract-data --url "https://example.com" --instructions "Extract product information" --api-key "your-api-key"

# Scrape URL
npm run dev:cli -- scrape-url --url "https://example.com" --api-key "your-api-key"

# Extract links from URL
npm run dev:cli -- extract-links --url "https://example.com" --type "all" --api-key "your-api-key"

# Summarize URL
npm run dev:cli -- summarize-url --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"

MCP Setup

For local configuration with stdio transport:

{
  "mcpServers": {
    "reviewwebsite": {
      "command": "node",
      "args": ["/path/to/reviewwebsite-mcp-server/dist/index.js"],
      "transportType": "stdio"
    }
  }
}

For remote HTTP configuration:

{
  "mcpServers": {
    "reviewwebsite": {
      "type": "http",
      "url": "http://localhost:8080/mcp"
    }
  }
}

Environment Variables for HTTP Transport:

You can configure the HTTP server using these environment variables:

  • MCP_HTTP_HOST: The host to bind to (default: 127.0.0.1)
  • MCP_HTTP_PORT: The port to listen on (default: 8080)
  • MCP_HTTP_PATH: The endpoint path (default: /mcp)

Source Code Overview

What is MCP?

Model Context Protocol (MCP) is an open standard that allows AI systems to securely and contextually connect with external tools and data sources.

This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.

Why Use This Boilerplate?

  • Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clear separation between CLI, tools, controllers, and services.

  • Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability.

  • Working Example: Includes a fully implemented IP lookup tool demonstrating the complete pattern from CLI to API integration.

  • Testing Framework: Comes with testing infrastructure for both unit and CLI integration tests, including coverage reporting.

  • Development Tooling: Includes ESLint, Prettier, TypeScript, and other quality tools preconfigured for MCP server development.


Getting Started

Prerequisites

  • Node.js (>=18.x): Download
  • Git: For version control

Step 1: Clone and Install

# Clone the repository
git clone https://github.com/mrgoonie/reviewwebsite-mcp-server.git
cd reviewwebsite-mcp-server

# Install dependencies
npm install

Step 2: Run Development Server

Start the server in development mode with stdio transport (default):

npm run dev:server

Or with the Streamable HTTP transport:

npm run dev:server:http

This starts the MCP server with hot-reloading and enables the MCP Inspector at http://localhost:5173.

⚙️ Proxy server listening on port 6277 🔍 MCP Inspector is up and running at http://127.0.0.1:6274

When using HTTP transport, the server will be available at http://127.0.0.1:8080/mcp by default.


Step 3: Test the ReviewWebsite API Tools

Use the ReviewWebsite API tools via CLI:

# Get available AI models
npm run dev:cli -- get-ai-models --api-key "your-api-key"

# Create a review
npm run dev:cli -- create-review --url "https://example.com" --instructions "Review this website" --api-key "your-api-key"

# Convert URL to Markdown
npm run dev:cli -- convert-to-markdown --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"

Architecture

This boilerplate follows a clean, layered architecture pattern that separates concerns and promotes maintainability.

Project Structure

src/
├── cli/              # Command-line interfaces
├── controllers/      # Business logic
├── resources/        # MCP resources: expose data and content from your servers to LLMs
├── services/         # External API interactions
├── tools/            # MCP tool definitions
├── types/            # Type definitions
├── utils/            # Shared utilities
└── index.ts          # Entry point

Layers and Responsibilities

CLI Layer (src/cli/*.cli.ts)

  • Purpose: Define command-line interfaces that parse arguments and call controllers
  • Naming: Files should be named <feature>.cli.ts
  • Testing: CLI integration tests in <feature>.cli.test.ts

Tools Layer (src/tools/*.tool.ts)

  • Purpose: Define MCP tools with schemas and descriptions for AI assistants
  • Naming: Files should be named <feature>.tool.ts with types in <feature>.types.ts
  • Pattern: Each tool should use zod for argument validation

Controllers Layer (src/controllers/*.controller.ts)

  • Purpose: Implement business logic, handle errors, and format responses
  • Naming: Files should be named <feature>.controller.ts
  • Pattern: Should return standardized ControllerResponse objects

Services Layer (src/services/*.service.ts)

  • Purpose: Interact with external APIs or data sources
  • Naming: Files should be named <feature>.service.ts
  • Pattern: Pure API interactions with minimal logic

Utils Layer (src/utils/*.util.ts)

  • Purpose: Provide shared functionality across the application
  • Key Utils:
    • logger.util.ts: Structured logging
    • error.util.ts: Error handling and standardization
    • formatter.util.ts: Markdown formatting helpers

Development Guide

Development Scripts

# Start server in development mode (hot-reload & inspector)
npm run dev:server

# Run CLI in development mode
npm run dev:cli -- [command] [args]

# Build the project
npm run build

# Start server in production mode
npm run start:server

# Run CLI in production mode
npm run start:cli -- [command] [args]

Testing

# Run all tests
npm test

# Run specific tests
npm test -- src/path/to/test.ts

# Generate test coverage report
npm run test:coverage

Code Quality

# Lint code
npm run lint

# Format code with Prettier
npm run format

# Check types
npm run typecheck

Building Custom Tools

Follow these steps to add your own tools to the server:

1. Define Service Layer

Create a new service in src/services/ to interact with your external API:

// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';

const logger = Logger.forContext('services/example.service.ts');

export async function getData(param: string): Promise<any> {
	logger.debug('Getting data', { param });
	// API interaction code here
	return { result: 'example data' };
}

2. Create Controller

Add a controller in src/controllers/ to handle business logic:

// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';

const logger = Logger.forContext('controllers/example.controller.ts');

export interface GetDataOptions {
	param?: string;
}

export async function getData(
	options: GetDataOptions = {},
): Promise<ControllerResponse> {
	try {
		logger.debug('Getting data with options', options);

		const data = await exampleService.getData(options.param || 'default');

		const content = formatMarkdown(data);

		return { content };
	} catch (error) {
		throw handleControllerError(error, {
			entityType: 'ExampleData',
			operation: 'getData',
			source: 'controllers/example.controller.ts',
		});
	}
}

3. Implement MCP Tool

Create a tool definition in src/tools/:

// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';

const logger = Logger.forContext('tools/example.tool.ts');

const GetDataArgs = z.object({
	param: z.string().optional().describe('Optional parameter'),
});

type GetDataArgsType = z.infer<typeof GetDataArgs>;

async function handleGetData(args: GetDataArgsType) {
	try {
		logger.debug('Tool get_data called', args);

		const result = await exampleController.getData({
			param: args.param,
		});

		return {
			content: [{ type: 'text' as const, text: result.content }],
		};
	} catch (error) {
		logger.error('Tool get_data failed', error);
		return formatErrorForMcpTool(error);
	}
}

export function register(server: McpServer) {
	server.tool(
		'get_data',
		`Gets data from the example API, optionally using \`param\`.
Use this to fetch example data. Returns formatted data as Markdown.`,
		GetDataArgs.shape,
		handleGetData,
	);
}

4. Add CLI Support

Create a CLI command in src/cli/:

// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';

const logger = Logger.forContext('cli/example.cli.ts');

program
	.command('get-data')
	.description('Get example data')
	.option('--param <value>', 'Optional parameter')
	.action(async (options) => {
		try {
			logger.debug('CLI get-data called', options);

			const result = await exampleController.getData({
				param: options.param,
			});

			console.log(result.content);
		} catch (error) {
			handleCliError(error);
		}
	});

5. Register Components

Update the entry points to register your new components:

// In src/cli/index.ts
import '../cli/example.cli.js';

// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);

Debugging Tools

MCP Inspector

Access the visual MCP Inspector to test your tools and view request/response details:

  1. Run npm run dev:server
  2. Open http://localhost:5173 in your browser
  3. Test your tools and view logs directly in the UI

Server Logs

Enable debug logs for development:

# Set environment variable
DEBUG=true npm run dev:server

# Or configure in ~/.mcp/configs.json

Publishing Your MCP Server

When ready to publish your custom MCP server:

  1. Update package.json with your details
  2. Update README.md with your tool documentation
  3. Build the project: npm run build
  4. Test the production build: npm run start:server
  5. Publish to npm: npm publish

License

MIT License

{
	"reviewwebsite": {
		"environments": {
			"DEBUG": "true",
			"REVIEWWEBSITE_API_KEY": "your-api-key-here"
		}
	}
}

Note: For backward compatibility, the server will also recognize configurations under the full package name (reviewwebsite-mcp-server) or the unscoped package name (reviewwebsite-mcp-server) if the reviewwebsite key is not found. However, using the short reviewwebsite key is recommended for new configurations.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选