RISEN Prompt Engineering MCP Tool

RISEN Prompt Engineering MCP Tool

A Model Context Protocol server that helps users create, validate, manage, and optimize prompts using the RISEN framework (Role, Instructions, Steps, Expectations, Narrowing).

Category
访问服务器

README

RISEN Prompt Engineering MCP Tool

A powerful Model Context Protocol (MCP) server that helps you create, validate, manage, and optimize prompts using the RISEN framework.

What is RISEN?

RISEN is a structured prompt engineering framework with 5 components:

  • Role: Define the AI's persona/expertise
  • Instructions: Clear directives for the task
  • Steps: Breakdown of the process
  • Expectations: Desired outcome/format
  • Narrowing: Constraints or creative elements

Features

🎯 Core Functionality

  • Template Management: Create, store, and organize RISEN prompt templates
  • Variable Support: Use {{variables}} for dynamic, reusable prompts
  • Validation Engine: Real-time structure checking and quality rating
  • Performance Tracking: Monitor prompt effectiveness with ratings and analytics
  • AI Suggestions: Get improvement recommendations based on best practices

🚀 Advanced Features

  • A/B Testing: Compare different prompt variations
  • Cross-AI Integration: Works with your Cross-AI tool to test prompts on multiple models
  • Knowledge Base Integration: Save successful prompts for future reference
  • Natural Language Conversion: Transform regular requests into RISEN format
  • Template Library: Pre-built templates for common tasks

Installation

  1. Clone or download this repository
  2. Install dependencies:
npm install
  1. Test the server:
npm test
  1. The server is now ready to be configured in Claude Desktop

Configuration

Add to your Claude Desktop config file:

Windows

{
  "mcpServers": {
    "risen-prompts": {
      "command": "node",
      "args": ["/path/to/mcp-risen-prompts/server.js"],
      "cwd": "/path/to/mcp-risen-prompts"
    }
  }
}

macOS/Linux

{
  "mcpServers": {
    "risen-prompts": {
      "command": "node", 
      "args": ["/path/to/mcp-risen-prompts/server.js"],
      "cwd": "/path/to/mcp-risen-prompts"
    }
  }
}

Replace /path/to/mcp-risen-prompts with your actual installation path.

Usage Examples

Creating a Template

Use risen_create to make a new template:
- Name: "Code Review"
- Role: "Senior software engineer with 15+ years experience"
- Instructions: "Review the provided code for quality and security"
- Steps: ["Analyze structure", "Check for bugs", "Suggest improvements"]
- Expectations: "Detailed line-by-line feedback with examples"
- Narrowing: "Focus on critical issues first"

Executing a Template

Use risen_execute with variables:
- Template ID: [your-template-id]
- Variables: {"language": "Python", "framework": "Django"}

Tracking Performance

After using a prompt, track its effectiveness:
- Use risen_track
- Rate 1-5 stars
- Add notes about what worked/didn't work

MCP Tools Available

  1. risen_create - Create new RISEN templates
  2. risen_validate - Check structure and get suggestions
  3. risen_execute - Run templates with variables
  4. risen_track - Record performance metrics
  5. risen_search - Find templates by tags/rating
  6. risen_analyze - Get insights on template performance
  7. risen_suggest - AI-powered improvement recommendations
  8. risen_convert - Transform natural language to RISEN

Template Examples

Blog Post Writer

Role: Content strategist and SEO expert
Instructions: Write an engaging blog post about {{topic}}
Steps: 
  1. Research keywords and trends
  2. Create compelling headline
  3. Develop main points with examples
  4. Include statistics and sources
  5. Write conclusion with CTA
Expectations: 1500-2000 words, SEO-optimized, engaging tone
Narrowing: Use conversational tone, include 3-5 keywords naturally

Data Analysis

Role: Data scientist specializing in {{domain}}
Instructions: Analyze {{dataset}} to uncover insights
Steps:
  1. Perform exploratory data analysis
  2. Identify key trends and patterns
  3. Run statistical tests
  4. Create visualizations
  5. Provide recommendations
Expectations: Clear insights with statistical backing
Narrowing: Focus on {{specific_metrics}} and business impact

Quality Rating

Templates are rated out of 100 based on:

  • Role specificity (20 points)
  • Instruction clarity (20 points)
  • Step detail (20 points)
  • Expectation metrics (20 points)
  • Narrowing focus (20 points)

Best Practices

  1. Be Specific: Vague roles like "assistant" rate lower than "Senior Python developer with AWS expertise"
  2. Use Variables: Make templates reusable with {{variables}}
  3. Measurable Expectations: Include numbers (word count, examples needed, etc.)
  4. Clear Steps: Each step should be actionable and specific
  5. Test & Iterate: Use tracking to refine templates over time

Integration with Other MCP Tools

With Cross-AI Tool

Execute the same RISEN prompt across multiple AI models:

  1. Create/select a RISEN template
  2. Use Cross-AI to run it on ChatGPT, Gemini, and Claude
  3. Compare results and track which model performs best

With Knowledge Base

Save successful prompts for future reference:

  1. Create and test a RISEN prompt
  2. Once proven effective, save to Knowledge Base
  3. Search and retrieve proven prompts by topic

Troubleshooting

Template not validating?

  • Ensure all required fields are filled
  • Check that steps is an array, not a string
  • Verify variables are properly declared

Variables not replacing?

  • Use exact syntax: {{variable_name}}
  • Ensure variable names match in declaration and usage
  • Check that all variables have values when executing

Low quality ratings?

  • Add more detail to each component
  • Include specific metrics in expectations
  • Use domain-specific language in role

Future Roadmap

  • [ ] Visual template builder UI
  • [ ] Community template marketplace
  • [ ] Advanced analytics dashboard
  • [ ] Prompt chaining workflows
  • [ ] Export/import template packs
  • [ ] Team collaboration features

Contributing

Found a bug or have a feature request? Contributions are welcome!

License

MIT License - feel free to use and modify as needed.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选