Robot MCP Server

Robot MCP Server

Enables LLM-based AI agents to control SO-ARM100 and SO-101 robots through natural language commands and camera feedback. It supports various transport protocols and provides tools for both autonomous robotic movement and manual keyboard operation.

Category
访问服务器

README

SO-ARM100 Robot Control with MCP

Watch the full tutorial

A companion repository to my video about MCP server for the robot:

  • MCP Server for LLM-based AI agents (Claude Desktop, Cursor, Windsurf, etc.) to control the robot
  • Direct keyboard control for manual operation
  • CLI AI Agent can use it directly to control the robot with Claude, Gemini or GPT model

If you want to know more about MCP refer to the official MCP documentation

This repository suppose to work with the SO-ARM100 / 101 robots. Refer to lerobot SO-101 setup guide for the detailed instructions on how to setup the robot.

Update! Now it partially supports LeKiwi (only arm, the mobile base control through MCP is TBD). I also added a simple agent that uses MCP server to control the robot. It supports Claude, Gemini and GPT models. In my experience Claude is the best and GPT is not so good, Gemini is in between.

After I released the video and this repository, LeRobot released a significant update of the library that breaks the compatibility with the original code.

If you want to use the original code and exactly follow the video, please use this release.

Quick Start

1. Install Dependencies

For simplicity I use simple pip instead of uv that is often recommended in MCP tutorials - it works just fine.

python -m venv .venv
source .venv/bin/activate  # or .venv\Scripts\activate on Windows
pip install -r requirements.txt

It may be required to install lerobot separately, just use the official instructions from the lerobot repository

2. Connect Your Robot

  • Connect SO-ARM100 via USB
  • Update config.py with your serial port for so-arm (e.g., /dev/tty.usbmodem58FD0168731) or robot_ip for lekiwi (e.g., 192.168.1.1)
  • Connect cameras and update config.py with the correct indices and names (for lekiwi only names are important)

3. Use the robot

🔍 Check Robot Status and Calibration:

python check_positions.py

This will show you the current robot state without actual control. Move your robot manually to make sure it is properly calibrated and configured.

After the latest update, lerobot is using the normalized joints states instead of degrees. You can update MOTOR_NORMALIZED_TO_DEGREE_MAPPING in config.py to match your robot calibration. You will need to update these values every time you recalibrate the robot.

🎮 Manual Keyboard Control:

python keyboard_controller.py

Now you can try to control the robot manually using the keyboard. Test it before moving on to the MCP step, to make sure it works properly.

🛠️ MCP server in the dev mode

mcp dev mcp_robot_server.py

Final test step - to debug the MCP server, use the UI to connect to it and try to send some requests.

🤖 AI Agent Control (MCP Server):

WARNING: using MCP server itself is free, but it requires MCP client that will send requests to some LLM. Generally it is not free - and controlling the robot with MCP can become expensive, as it sends multiple agentic requests with images that use a lot of tokens. Make sure you understand and control your token usage and corresponding costs before doing it. The actual cost depends on the client and models you use, and it is your responsibility to monitor and control it.

mcp run mcp_robot_server.py --transport SELECTED_TRANSPORT

Supports: stdio, sse, streamable-http

Now your server can be added to any MCP client.

Connecting MCP Clients

Different clients can support different transports, you can choose the one that works best for you. The functionality is the same.

STDIO transport

Add to your MCP configuration:

{
  "mcpServers": {
    "SO-ARM100 robot controller": {
      "command": "/path/to/.venv/bin/python",
      "args": ["/path/to/mcp_robot_server.py"]
    }
  }
}

SEE transport

Run the server in terminal with the SSE transport:

mcp run mcp_robot_server.py --transport sse

Add to your MCP configuration:

{
  "mcpServers": {
    "SO-ARM100 robot controller": {
      "url": "http://127.0.0.1:3001/sse"
    }
  }
}

Streamed-HTTP transport

It is suppose to be a replacement for SSE but currently not so many clients support it.

Run the server in terminal with the Streamed-HTTP transport:

mcp run mcp_robot_server.py --transport streamable-http

Add to your MCP configuration:

{
  "mcpServers": {
    "SO-ARM100 robot controller": {
      "url": "http://127.0.0.1:3001/mcp"
    }
  }
}

Using the robot with MCP

Now you can go to you Client and it should be able to control the robot when you give it the natural language instructions.

Using the Agent

Start the MCP server with the SSE transport:

mcp run mcp_robot_server.py --transport sse

Now you can use the AI agent to control the robot with natural language instructions.

Configuration

Create a .env file in the project root with your API keys:

# API Keys (at least one required)
ANTHROPIC_API_KEY=your_anthropic_api_key_here
GEMINI_API_KEY=your_gemini_api_key_here
OPENAI_API_KEY=your_openai_api_key_here

# MCP Server Configuration (optional)
MCP_SERVER_IP=127.0.0.1
MCP_PORT=3001

Basic Usage

python agent.py

Advanced Usage

# Use Gemini instead of Claude
python agent.py --model gemini-2.5-flash

# Override API key
python agent.py --api-key your_api_key_here

# Enable image viewer window
python agent.py --show-images

# Increase thinking budget for better reasoning
python agent.py --thinking-budget 2048

# Custom MCP server location
python agent.py --mcp-server-ip 192.168.1.100 --mcp-port 3002

Supported Models (examples)

Claude (Anthropic):

  • claude-3-7-sonnet-latest (default)
  • All models support thinking, streaming, and multimodal tool results

Gemini (Google):

  • gemini-2.5-flash
  • gemini-2.5-pro
  • Use 2.5+ models as they support thinking feature

GPT (OpenAI):

  • gpt-4o and variants
  • The rest of the models mostly don't support thinking or tool calling.

Overall I didn't manage to get good results with GPT models.

Parameters

  • --model: LLM model to use (default: claude-3-7-sonnet-latest)
  • --api-key: API key override (uses .env file by default)
  • --show-images: Display robot camera images in a window
  • --thinking-budget: Thinking tokens budget (default: 1024, 0 to disable)
  • --thinking-every-n: Use thinking every N steps (default: 3)
  • --mcp-server-ip: MCP server IP address (default: 127.0.0.1)
  • --mcp-port: MCP server port (default: 3001)

Cost Considerations

Token Usage:

  • Claude counts MCP images in input tokens (more expensive for vision tasks)
  • Gemini doesn't count MCP images in tokens (token usage will be displayed only for text)
  • Thinking tokens add to the cost but improve reasoning quality

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选