Robotics MCP Server

Robotics MCP Server

Provides unified control for both physical robots (ROS-based like Moorebot Scout, Unitree) and virtual robots in Unity3D/VRChat, enabling multi-robot coordination, environment generation, and automated 3D model creation.

Category
访问服务器

README

Robotics MCP Server

Unified robotics control via MCP - Physical and virtual robots (bot + vbot)

FastMCP Python License

🎯 Overview

Robotics MCP Server provides unified control for both physical robots (ROS-based) and virtual robots (Unity/VRChat), with a focus on Moorebot Scout, Unitree robots, and virtual robotics testing.

Key Features

  • Physical Robot Control: Moorebot Scout (ROS 1.4), Unitree Go2/G1
  • YDLIDAR SuperLight (95g) LiDAR integration for Scout
  • Virtual Robot Control: Unity3D/VRChat/Resonite integration via existing MCP servers
  • ROS Bridge Integration: ROS 1.4 (Melodic) via rosbridge_suite
  • Multi-Robot Coordination: Physical and virtual robots together
  • World Labs Marble/Chisel: Environment generation and import
  • Dual Transport: stdio (MCP) + HTTP (FastAPI) endpoints
  • MCP Server Composition: Integrates with osc-mcp, unity3d-mcp, vrchat-mcp, avatar-mcp, blender-mcp, gimp-mcp
  • Robot Model Creation: Automated 3D model creation using blender-mcp (geometry) + gimp-mcp (textures)

📚 Documentation

🚀 Quick Start

Installation

# Clone repository
git clone https://github.com/sandraschi/robotics-mcp.git
cd robotics-mcp

# Install dependencies
pip install -e ".[dev]"

# Or install from PyPI (when published)
pip install robotics-mcp

Configuration

Create configuration file at ~/.robotics-mcp/config.yaml:

robotics:
  moorebot_scout:
    enabled: false
    robot_id: "scout_01"
    ip_address: "192.168.1.100"
    port: 9090
    mock_mode: true
  virtual:
    enabled: true
    platform: "unity"
    unity:
      host: "localhost"
      port: 8080
  mcp_integration:
    osc_mcp:
      enabled: true
      prefix: "osc"
    unity3d_mcp:
      enabled: true
      prefix: "unity"
    vrchat_mcp:
      enabled: true
      prefix: "vrchat"
    avatar_mcp:
      enabled: true
      prefix: "avatar"
    blender_mcp:
      enabled: true
      prefix: "blender"
    gimp_mcp:
      enabled: true
      prefix: "gimp"
server:
  enable_http: true
  http_port: 8080
  log_level: "INFO"

Running the Server

stdio Mode (MCP Protocol)

python -m robotics_mcp.server --mode stdio

HTTP Mode (FastAPI)

python -m robotics_mcp.server --mode http --port 8080

Dual Mode (Both stdio + HTTP)

python -m robotics_mcp.server --mode dual --port 8080

🛠️ Usage

MCP Tools

Robot Control

# Get robot status
await robot_control(robot_id="scout_01", action="get_status")

# Move robot
await robot_control(
    robot_id="scout_01",
    action="move",
    linear=0.2,
    angular=0.0
)

# Stop robot
await robot_control(robot_id="scout_01", action="stop")

Virtual Robotics

# Spawn virtual robot in Unity
await virtual_robotics(
    robot_type="scout",
    action="spawn_robot",
    platform="unity",
    position={"x": 0, "y": 0, "z": 0}
)

# Load Marble environment
await virtual_robotics(
    action="load_environment",
    environment="stroheckgasse_apartment",
    platform="unity"
)

Robot Model Tools

# Create Scout model from scratch (uses blender-mcp + gimp-mcp)
await robot_model_create(
    robot_type="scout",
    output_path="D:/Models/scout_model.fbx",
    format="fbx",
    dimensions={"length": 0.115, "width": 0.10, "height": 0.08},
    create_textures=True,
    texture_style="realistic"
)

# Import robot model into Unity
await robot_model_import(
    robot_type="scout",
    model_path="D:/Models/scout_model.fbx",
    format="fbx",
    platform="unity",
    project_path="D:/Projects/UnityRobots"
)

# Convert model between formats
await robot_model_convert(
    source_path="D:/Models/scout.fbx",
    source_format="fbx",
    target_format="glb",
    target_path="D:/Models/scout.glb"
)

HTTP API

Health Check

curl http://localhost:8080/api/v1/health

List Robots

curl http://localhost:8080/api/v1/robots

Control Robot

curl -X POST http://localhost:8080/api/v1/robots/scout_01/control \
  -H "Content-Type: application/json" \
  -d '{"action": "move", "linear": 0.2, "angular": 0.0}'

List Tools

curl http://localhost:8080/api/v1/tools

Call Tool

curl -X POST http://localhost:8080/api/v1/tools/robot_control \
  -H "Content-Type: application/json" \
  -d '{"robot_id": "scout_01", "action": "get_status"}'

📚 Documentation

🧪 Testing

# Run all tests
pytest

# Run unit tests only
pytest tests/unit

# Run integration tests
pytest tests/integration

# Run with coverage
pytest --cov=robotics_mcp --cov-report=html

🔧 Development

Project Structure

robotics-mcp/
├── src/robotics_mcp/
│   ├── server.py              # Main FastMCP server
│   ├── clients/               # Robot client implementations
│   ├── integrations/          # MCP server integration wrappers
│   ├── tools/                 # Portmanteau tool implementations
│   └── utils/                 # Utilities (config, state, mock data)
├── tests/
│   ├── unit/                  # Unit tests
│   └── integration/           # Integration tests
├── docs/                      # Documentation
├── scripts/                   # Utility scripts
└── mcpb/                      # MCPB packaging

Code Quality

# Format code
black src/ tests/

# Lint code
ruff check src/ tests/

# Type checking
mypy src/

🤝 Contributing

Contributions welcome! Please see CONTRIBUTING.md for guidelines.

📄 License

MIT License - see LICENSE for details.

🙏 Acknowledgments

  • FastMCP framework
  • ROS community
  • Unity3D, VRChat, World Labs Marble/Chisel
  • MCP ecosystem contributors

Status: Beta - Virtual robotics (vbot) prioritized, physical robot support coming after hardware arrives (XMas 2025)

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选