Robotics MCP Server
Provides unified control for both physical robots (ROS-based like Moorebot Scout, Unitree) and virtual robots in Unity3D/VRChat, enabling multi-robot coordination, environment generation, and automated 3D model creation.
README
Robotics MCP Server
Unified robotics control via MCP - Physical and virtual robots (bot + vbot)
🎯 Overview
Robotics MCP Server provides unified control for both physical robots (ROS-based) and virtual robots (Unity/VRChat), with a focus on Moorebot Scout, Unitree robots, and virtual robotics testing.
Key Features
- Physical Robot Control: Moorebot Scout (ROS 1.4), Unitree Go2/G1
- YDLIDAR SuperLight (95g) LiDAR integration for Scout
- Virtual Robot Control: Unity3D/VRChat/Resonite integration via existing MCP servers
- ROS Bridge Integration: ROS 1.4 (Melodic) via rosbridge_suite
- Multi-Robot Coordination: Physical and virtual robots together
- World Labs Marble/Chisel: Environment generation and import
- Dual Transport: stdio (MCP) + HTTP (FastAPI) endpoints
- MCP Server Composition: Integrates with
osc-mcp,unity3d-mcp,vrchat-mcp,avatar-mcp,blender-mcp,gimp-mcp - Robot Model Creation: Automated 3D model creation using
blender-mcp(geometry) +gimp-mcp(textures)
📚 Documentation
- Unity Vbot Instantiation Guide - Complete guide for instantiating virtual robots in Unity3D with proper terminology
🚀 Quick Start
Installation
# Clone repository
git clone https://github.com/sandraschi/robotics-mcp.git
cd robotics-mcp
# Install dependencies
pip install -e ".[dev]"
# Or install from PyPI (when published)
pip install robotics-mcp
Configuration
Create configuration file at ~/.robotics-mcp/config.yaml:
robotics:
moorebot_scout:
enabled: false
robot_id: "scout_01"
ip_address: "192.168.1.100"
port: 9090
mock_mode: true
virtual:
enabled: true
platform: "unity"
unity:
host: "localhost"
port: 8080
mcp_integration:
osc_mcp:
enabled: true
prefix: "osc"
unity3d_mcp:
enabled: true
prefix: "unity"
vrchat_mcp:
enabled: true
prefix: "vrchat"
avatar_mcp:
enabled: true
prefix: "avatar"
blender_mcp:
enabled: true
prefix: "blender"
gimp_mcp:
enabled: true
prefix: "gimp"
server:
enable_http: true
http_port: 8080
log_level: "INFO"
Running the Server
stdio Mode (MCP Protocol)
python -m robotics_mcp.server --mode stdio
HTTP Mode (FastAPI)
python -m robotics_mcp.server --mode http --port 8080
Dual Mode (Both stdio + HTTP)
python -m robotics_mcp.server --mode dual --port 8080
🛠️ Usage
MCP Tools
Robot Control
# Get robot status
await robot_control(robot_id="scout_01", action="get_status")
# Move robot
await robot_control(
robot_id="scout_01",
action="move",
linear=0.2,
angular=0.0
)
# Stop robot
await robot_control(robot_id="scout_01", action="stop")
Virtual Robotics
# Spawn virtual robot in Unity
await virtual_robotics(
robot_type="scout",
action="spawn_robot",
platform="unity",
position={"x": 0, "y": 0, "z": 0}
)
# Load Marble environment
await virtual_robotics(
action="load_environment",
environment="stroheckgasse_apartment",
platform="unity"
)
Robot Model Tools
# Create Scout model from scratch (uses blender-mcp + gimp-mcp)
await robot_model_create(
robot_type="scout",
output_path="D:/Models/scout_model.fbx",
format="fbx",
dimensions={"length": 0.115, "width": 0.10, "height": 0.08},
create_textures=True,
texture_style="realistic"
)
# Import robot model into Unity
await robot_model_import(
robot_type="scout",
model_path="D:/Models/scout_model.fbx",
format="fbx",
platform="unity",
project_path="D:/Projects/UnityRobots"
)
# Convert model between formats
await robot_model_convert(
source_path="D:/Models/scout.fbx",
source_format="fbx",
target_format="glb",
target_path="D:/Models/scout.glb"
)
HTTP API
Health Check
curl http://localhost:8080/api/v1/health
List Robots
curl http://localhost:8080/api/v1/robots
Control Robot
curl -X POST http://localhost:8080/api/v1/robots/scout_01/control \
-H "Content-Type: application/json" \
-d '{"action": "move", "linear": 0.2, "angular": 0.0}'
List Tools
curl http://localhost:8080/api/v1/tools
Call Tool
curl -X POST http://localhost:8080/api/v1/tools/robot_control \
-H "Content-Type: application/json" \
-d '{"robot_id": "scout_01", "action": "get_status"}'
📚 Documentation
- Comprehensive Project Notes 📖 Complete project documentation!
- VRM vs Robot Models 🤖 VRM format guide - when to use VRM vs FBX/GLB
- Unity Vbot Instantiation Guide 🎮 Complete guide for instantiating virtual robots in Unity3D
- Implementation Plan
- Quick Start: VRChat ⚡ Get Scout into VRChat!
- ROS 1.4 Local Setup 🐳 Full local ROS environment for Scout!
- VRChat Integration Guide
- VRChat Scout Setup - Complete guide
- Architecture
- API Reference
- MCP Integration
🧪 Testing
# Run all tests
pytest
# Run unit tests only
pytest tests/unit
# Run integration tests
pytest tests/integration
# Run with coverage
pytest --cov=robotics_mcp --cov-report=html
🔧 Development
Project Structure
robotics-mcp/
├── src/robotics_mcp/
│ ├── server.py # Main FastMCP server
│ ├── clients/ # Robot client implementations
│ ├── integrations/ # MCP server integration wrappers
│ ├── tools/ # Portmanteau tool implementations
│ └── utils/ # Utilities (config, state, mock data)
├── tests/
│ ├── unit/ # Unit tests
│ └── integration/ # Integration tests
├── docs/ # Documentation
├── scripts/ # Utility scripts
└── mcpb/ # MCPB packaging
Code Quality
# Format code
black src/ tests/
# Lint code
ruff check src/ tests/
# Type checking
mypy src/
🤝 Contributing
Contributions welcome! Please see CONTRIBUTING.md for guidelines.
📄 License
MIT License - see LICENSE for details.
🙏 Acknowledgments
- FastMCP framework
- ROS community
- Unity3D, VRChat, World Labs Marble/Chisel
- MCP ecosystem contributors
Status: Beta - Virtual robotics (vbot) prioritized, physical robot support coming after hardware arrives (XMas 2025)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。