
Rockfish MCP Server
Enables AI assistants to interact with Rockfish's machine learning platform through comprehensive API access. Supports managing databases, worker sets, workflows, models, projects, and datasets for ML operations.
README
Rockfish MCP Server
A Model Context Protocol (MCP) server that provides access to the Rockfish API, enabling AI assistants to interact with Rockfish's machine learning platform.
Features
This MCP server provides tools for the following Rockfish resources:
- Databases: Create, list, update, and delete databases
- Worker Sets: Manage worker sets for distributed processing
- Workflows: Create and manage ML workflows
- Models: Upload, list, and manage ML models
- Projects: Organize and manage projects
- Datasets: Create and manage datasets
Installation
- Clone the repository:
git clone https://github.com/yourusername/rockfish-mcp.git
cd rockfish-mcp
- Install dependencies:
pip install -e .
- Set up environment variables:
cp .env.example .env
# Edit .env and add your Rockfish API key
Configuration
Create a .env
file with your Rockfish API credentials:
ROCKFISH_API_KEY=your_api_key_here
ROCKFISH_BASE_URL=https://api.rockfish.ai
Usage
Run the MCP server:
python -m rockfish_mcp.server
Or use the console script:
rockfish-mcp
Claude Desktop Setup
To use this MCP server with Claude Desktop:
-
Complete the installation steps above (clone, install dependencies, set up .env file)
-
Find your Claude Desktop configuration directory:
- macOS:
~/Library/Application Support/Claude/
- Windows:
%APPDATA%\Claude\
- Linux:
~/.config/Claude/
- macOS:
-
Create or edit the
claude_desktop_config.json
file in that directory:
{
"mcpServers": {
"rockfish": {
"command": "/path/to/your/project/.venv/bin/python",
"args": ["-m", "rockfish_mcp.server"],
"env": {
"ROCKFISH_API_KEY": "your_api_key_here",
"ROCKFISH_BASE_URL": "https://api.rockfish.ai"
}
}
}
}
-
Update the paths in the configuration:
- Replace
/path/to/your/project/.venv/bin/python
with the actual path to your Python executable - Replace
your_api_key_here
with your actual Rockfish API key - Adjust
ROCKFISH_BASE_URL
if you're using a different endpoint
- Replace
-
Get the correct Python path by running this command in your project directory:
which python
- Example configuration (replace with your actual paths and API key):
{
"mcpServers": {
"rockfish": {
"command": "/Users/shane/code/rockfish-mcp/.venv/bin/python",
"args": ["-m", "rockfish_mcp.server"],
"env": {
"ROCKFISH_API_KEY": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
"ROCKFISH_BASE_URL": "https://sunset-beach.rockfish.ai"
}
}
}
}
-
Restart Claude Desktop after making these changes
-
Test the connection by asking Claude to list your Rockfish databases or projects
MCP Inspector Setup
The MCP Inspector is a debugging tool that helps you test your MCP server before connecting it to Claude Desktop.
Installation
npx @modelcontextprotocol/inspector
Usage
- Start the MCP Inspector:
npx @modelcontextprotocol/inspector /Users/shane/code/rockfish-mcp/.venv/bin/python -m rockfish_mcp.server
- Or create a test script for easier repeated testing:
#!/bin/bash
# test-mcp.sh
export ROCKFISH_API_KEY="your_api_key_here"
export ROCKFISH_BASE_URL="https://sunset-beach.rockfish.ai"
npx @modelcontextprotocol/inspector /Users/shane/code/rockfish-mcp/.venv/bin/python -m rockfish_mcp.server
Make it executable and run:
chmod +x test-mcp.sh
./test-mcp.sh
-
The Inspector will open in your browser and show:
- Available tools (should show all 22 Rockfish tools)
- Tool schemas and descriptions
- Interactive tool testing interface
-
Test your tools by:
- Selecting a tool from the list (e.g.,
list_databases
) - Filling in required parameters
- Clicking "Call Tool" to test the API call
- Viewing the response
- Selecting a tool from the list (e.g.,
Useful Tools to Test First
list_databases
- Simple GET request with no parameterslist_projects
- Another simple list operationget_database
- Test with a database ID from the listcreate_database
- Test creating a new resource
Troubleshooting
- MCP server not appearing: Check that the Python path is correct and the virtual environment is activated
- Authentication errors: Verify your
ROCKFISH_API_KEY
is correct - Connection issues: Confirm your
ROCKFISH_BASE_URL
is accessible - Path issues on Windows: Use forward slashes or escaped backslashes in JSON paths
Available Tools
Database Tools
list_databases
: List all databasescreate_database
: Create a new databaseget_database
: Get a specific database by IDupdate_database
: Update a databasedelete_database
: Delete a database
Worker Set Tools
list_worker_sets
: List all worker setscreate_worker_set
: Create a new worker setget_worker_set
: Get a specific worker set by IDdelete_worker_set
: Delete a worker set
Workflow Tools
list_workflows
: List all workflowscreate_workflow
: Create and run a new workflowget_workflow
: Get a specific workflow by IDupdate_workflow
: Update a workflow
Model Tools
list_models
: List all modelsupload_model
: Upload a new modelget_model
: Get a specific model by IDdelete_model
: Delete a model
Project Tools
list_projects
: List all projectscreate_project
: Create a new projectget_project
: Get a specific project by IDupdate_project
: Update a project
Dataset Tools
list_datasets
: List all datasetscreate_dataset
: Create a new datasetget_dataset
: Get a specific dataset by IDupdate_dataset
: Update a datasetdelete_dataset
: Delete a dataset
Development
To contribute to this project:
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
MIT License
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。