Rockfish MCP Server

Rockfish MCP Server

Enables AI assistants to interact with Rockfish's machine learning platform through comprehensive API access. Supports managing databases, worker sets, workflows, models, projects, and datasets for ML operations.

Category
访问服务器

README

Rockfish MCP Server

A Model Context Protocol (MCP) server that provides access to the Rockfish API, enabling AI assistants to interact with Rockfish's machine learning platform.

Features

This MCP server provides tools for the following Rockfish resources:

  • Databases: Create, list, update, and delete databases
  • Worker Sets: Manage worker sets for distributed processing
  • Workflows: Create and manage ML workflows
  • Models: Upload, list, and manage ML models
  • Projects: Organize and manage projects
  • Datasets: Create and manage datasets

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/rockfish-mcp.git
cd rockfish-mcp
  1. Install dependencies:
pip install -e .
  1. Set up environment variables:
cp .env.example .env
# Edit .env and add your Rockfish API key

Configuration

Create a .env file with your Rockfish API credentials:

ROCKFISH_API_KEY=your_api_key_here
ROCKFISH_BASE_URL=https://api.rockfish.ai

Usage

Run the MCP server:

python -m rockfish_mcp.server

Or use the console script:

rockfish-mcp

Claude Desktop Setup

To use this MCP server with Claude Desktop:

  1. Complete the installation steps above (clone, install dependencies, set up .env file)

  2. Find your Claude Desktop configuration directory:

    • macOS: ~/Library/Application Support/Claude/
    • Windows: %APPDATA%\Claude\
    • Linux: ~/.config/Claude/
  3. Create or edit the claude_desktop_config.json file in that directory:

{
  "mcpServers": {
    "rockfish": {
      "command": "/path/to/your/project/.venv/bin/python",
      "args": ["-m", "rockfish_mcp.server"],
      "env": {
        "ROCKFISH_API_KEY": "your_api_key_here",
        "ROCKFISH_BASE_URL": "https://api.rockfish.ai"
      }
    }
  }
}
  1. Update the paths in the configuration:

    • Replace /path/to/your/project/.venv/bin/python with the actual path to your Python executable
    • Replace your_api_key_here with your actual Rockfish API key
    • Adjust ROCKFISH_BASE_URL if you're using a different endpoint
  2. Get the correct Python path by running this command in your project directory:

which python
  1. Example configuration (replace with your actual paths and API key):
{
  "mcpServers": {
    "rockfish": {
      "command": "/Users/shane/code/rockfish-mcp/.venv/bin/python",
      "args": ["-m", "rockfish_mcp.server"],
      "env": {
        "ROCKFISH_API_KEY": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
        "ROCKFISH_BASE_URL": "https://sunset-beach.rockfish.ai"
      }
    }
  }
}
  1. Restart Claude Desktop after making these changes

  2. Test the connection by asking Claude to list your Rockfish databases or projects

MCP Inspector Setup

The MCP Inspector is a debugging tool that helps you test your MCP server before connecting it to Claude Desktop.

Installation

npx @modelcontextprotocol/inspector

Usage

  1. Start the MCP Inspector:
npx @modelcontextprotocol/inspector /Users/shane/code/rockfish-mcp/.venv/bin/python -m rockfish_mcp.server
  1. Or create a test script for easier repeated testing:
#!/bin/bash
# test-mcp.sh
export ROCKFISH_API_KEY="your_api_key_here"
export ROCKFISH_BASE_URL="https://sunset-beach.rockfish.ai"
npx @modelcontextprotocol/inspector /Users/shane/code/rockfish-mcp/.venv/bin/python -m rockfish_mcp.server

Make it executable and run:

chmod +x test-mcp.sh
./test-mcp.sh
  1. The Inspector will open in your browser and show:

    • Available tools (should show all 22 Rockfish tools)
    • Tool schemas and descriptions
    • Interactive tool testing interface
  2. Test your tools by:

    • Selecting a tool from the list (e.g., list_databases)
    • Filling in required parameters
    • Clicking "Call Tool" to test the API call
    • Viewing the response

Useful Tools to Test First

  • list_databases - Simple GET request with no parameters
  • list_projects - Another simple list operation
  • get_database - Test with a database ID from the list
  • create_database - Test creating a new resource

Troubleshooting

  • MCP server not appearing: Check that the Python path is correct and the virtual environment is activated
  • Authentication errors: Verify your ROCKFISH_API_KEY is correct
  • Connection issues: Confirm your ROCKFISH_BASE_URL is accessible
  • Path issues on Windows: Use forward slashes or escaped backslashes in JSON paths

Available Tools

Database Tools

  • list_databases: List all databases
  • create_database: Create a new database
  • get_database: Get a specific database by ID
  • update_database: Update a database
  • delete_database: Delete a database

Worker Set Tools

  • list_worker_sets: List all worker sets
  • create_worker_set: Create a new worker set
  • get_worker_set: Get a specific worker set by ID
  • delete_worker_set: Delete a worker set

Workflow Tools

  • list_workflows: List all workflows
  • create_workflow: Create and run a new workflow
  • get_workflow: Get a specific workflow by ID
  • update_workflow: Update a workflow

Model Tools

  • list_models: List all models
  • upload_model: Upload a new model
  • get_model: Get a specific model by ID
  • delete_model: Delete a model

Project Tools

  • list_projects: List all projects
  • create_project: Create a new project
  • get_project: Get a specific project by ID
  • update_project: Update a project

Dataset Tools

  • list_datasets: List all datasets
  • create_dataset: Create a new dataset
  • get_dataset: Get a specific dataset by ID
  • update_dataset: Update a dataset
  • delete_dataset: Delete a dataset

Development

To contribute to this project:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选