Roo Code Memory Bank MCP Server
Enables AI assistants to maintain persistent project context across sessions by storing and retrieving structured information in markdown files organized in a memory bank directory.
Tools
append_memory_bank_entry
Appends a new, timestamped entry to a specified file, optionally under a specific markdown header.
initialize_memory_bank
Creates the memory-bank directory and standard .md files with initial templates.
check_memory_bank_status
Checks if the memory-bank directory exists and lists the .md files within it.
read_memory_bank_file
Reads the full content of a specified memory bank file.
README
Roo Code Memory Bank MCP Server
This project implements the core functionality of the Roo Code Memory Bank system as a Model Context Protocol (MCP) server. It allows AI assistants to maintain project context across sessions by interacting with a file-based memory bank using structured MCP tools.
Features
This MCP server provides the following tools:
initialize_memory_bank: Creates thememory-bank/directory and standard.mdfiles (productContext.md,activeContext.md,progress.md,decisionLog.md,systemPatterns.md) with initial templates.- Input: (Optional)
{ "project_brief_content": string } - Output:
{ "status": "success" | "error", "messages"?: string[], "message"?: string }
- Input: (Optional)
check_memory_bank_status: Checks if thememory-bank/directory exists and lists the.mdfiles within it.- Input:
{} - Output:
{ "exists": boolean, "files": string[] }
- Input:
read_memory_bank_file: Reads the full content of a specified memory bank file.- Input:
{ "file_name": string } - Output:
{ "content": string }or error object.
- Input:
append_memory_bank_entry: Appends a new, timestamped entry to a specified file, optionally under a specific markdown header. Creates the file if it doesn't exist.- Input:
{ "file_name": string, "entry": string, "section_header"?: string } - Output:
{ "status": "success" | "error", "message": string }
- Input:
Prerequisites
- Node.js (v18 or later recommended)
- npm (usually included with Node.js)
- An MCP client environment (like the one used by Cline) capable of managing and launching MCP servers.
Installation
- Clone the repository:
git clone https://github.com/IncomeStreamSurfer/roo-code-memory-bank-mcp-server.git cd roo-code-memory-bank-mcp-server - Install dependencies:
npm install - Build the project:
This compiles the TypeScript code into JavaScript in thenpm run builddist/directory.
Configuration (for Cline MCP Client)
To make this server available to your AI assistant (like Cline), you need to add its configuration to your MCP settings file (e.g., cline_mcp_settings.json).
Find the mcpServers object in your settings file and add the following entry:
{
"mcpServers": {
// ... other server configurations ...
"roo-code-memory-bank-mcp": {
"autoApprove": [
"initialize_memory_bank",
"check_memory_bank_status",
"read_memory_bank_file",
"append_memory_bank_entry"
],
"disabled": false,
"timeout": 60,
"command": "node", // Or "cmd.exe" with "/c node ..." on Windows if needed
"args": [
// IMPORTANT: Replace this path with the actual absolute path
// to the compiled index.js file on your system
"/path/to/your/cloned/repo/roo-code-memory-bank-mcp-server/dist/index.js"
],
"env": {},
"transportType": "stdio"
}
// ... other server configurations ...
}
}
Important: Replace /path/to/your/cloned/repo/ with the correct absolute path to where you cloned the repository on your machine. Ensure the path separator is correct for your operating system (e.g., use backslashes \ on Windows).
Running the Server
You don't typically need to run the server manually. The MCP client (like Cline) will automatically start the server using the command and args specified in the configuration file when one of its tools is called for the first time.
If you want to test it manually, you can run npm start from the project directory.
Usage
The AI assistant interacts with the server using the defined tools. The typical workflow involves:
- Checking the memory bank status (
check_memory_bank_status). - Initializing if needed (
initialize_memory_bank). - Reading relevant files (
read_memory_bank_file) to gain context. - Appending entries (
append_memory_bank_entry) as decisions are made or progress occurs.
The memory-bank/ directory will be created in the same directory where the server process is started (which should be the root of this project directory when launched via the MCP client configuration).
Custom instructions
Set these instructions inside Roo
You must use MCPs where needed
I have a specific MCP flow:
Use context7 to find any relevant documentation pieces you will need for this process, ensure to feed any relevant knoweldege to any relevant subtasks - use context7 at all times to do research on important documentation if you're unsure of something Use google maps mcp in order to search for <niche> + <county> - this will allow us to find the basic businesses we need to accomplish our task Use brave search mcp to find URLs to scrape Use fetch mcp with fetch_txt and fetch_markdown to find text and images on pages in order to convert into JSON files and create something in-depth Use openrouter search to find general sentiment of topics, reviews, etc.
Utilize the roo-code-memory-bank-mcp server to maintain project context:
- At the start of a task or significant subtask, use
check_memory_bank_status. - If the memory bank exists (
exists: true), useread_memory_bank_filefor relevant files (e.g.,productContext.md,activeContext.md) to load the current project context. - Incorporate this loaded context into your planning and execution.
- When making significant decisions, progress updates, or architectural changes, use
append_memory_bank_entryto record the information in the appropriate file (decisionLog.md,progress.md, etc.), ensuring context persistence. - If the memory bank doesn't exist, consider using
initialize_memory_bankif appropriate for the project.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。