
ROS2 MCP Server
Enables AI tools to interact with ROS2 robotics systems through natural language commands. Supports topic publishing/subscribing, service calls, message analysis, and auto-discovery of ROS2 interfaces for debugging and controlling robots.
README
ROS2 MCP Server
A Python implementation of the Model Context Protocol (MCP) for ROS2. This server enables AI tooling to connect with ROS2 nodes, topics, and services using the MCP standard over stdio. It is designed to be the easiest ROS2 server to configure in the world.
🎯 Why Choose This MCP Server?
Save hours of development time with native AI integration for your ROS2 projects:
- ⚡ 1-minute setup - World's easiest ROS2 MCP configuration
- 0️⃣ Zero-friction setup - stdio transport, no brokers, no webserver.
- 🔌 Auto-discovery - a built-in “list interfaces” tool dynamically enumerates available topics and services together with their message/service definitions (fields, types, schema) — so the client always knows exactly what data can be published or called.
- 🤖 AI-powered debugging - Let AI help you troubleshoot ROS2 issues in real-time
- 📊 Smart data analysis - Query your robot's sensor data using natural language
- 🚀 Boost productivity - Control robots, analyze logs, and debug issues through AI chat
- 💡 No ROS2 expertise required - AI translates your requests into proper ROS2 commands
Perfect for: Robotics developers, researchers, students, and anyone working with ROS2 who wants to leverage AI for faster development and debugging.
🌍 Real-world examples:
✨ Features
- List available topics
- List available services
- Call service
- Get messages from data storage systems (influxDB alternative to Rosbag2)
- Subscribe topic to get messages
- Publish message on topic
- Echo message on topic
- Get fields from message type
Note: To call service with custom service source it before start server.
⚙️ Installation
Follow the installation guide for step-by-step instructions:
- 🧩 Install in Visual Studio Code Copilot
- 🤖 Install in Claude Desktop
- 💻 Install in Warp
- 🐳 Build Docker Image locally
🔧 ROS 2 Tools
📋 Topics
Tool | Description | Inputs | Outputs |
---|---|---|---|
ros2_topic_list |
Returns list of available topics | – | topic_name (string): Topic name <br> topic_type (string): Message type |
ros2_topic_subscribe |
Subscribes to a ROS 2 topic and collects messages for a duration or message limit | topic_name (string) <br> duration (float) <br> message_limit (int) <br> (defaults: first msg, 5s) |
messages <br> count <br> duration |
ros2_get_messages |
Retrieves past messages from a topic (data black box) | topic_name (string) <br> message_type (string) <br> number_of_msg (int) <br> time_start (str) <br> time_end (str) |
timestamps <br> messages |
ros2_get_message_fields |
Gets field names and types for a message type | message_type (string) |
Field names + types |
ros2_topic_publish |
Publishes message to a topic | topic_name (string) <br> message_type (string) <br> data (dict) |
status |
🛠 Services
Tool | Description | Inputs | Outputs |
---|---|---|---|
ros2_service_list |
Returns list of available services | – | service_name (string) <br> service_type (string) <br> request_fields (array) |
ros2_service_call |
Calls a ROS 2 service | service_name (string) <br> service_type (string) <br> fields (array) <br> force_call (bool, default: false) |
result (string) <br> error (string, if any) |
🐞 Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm
with this command:
npx @modelcontextprotocol/inspector uv --directory /path/to/mcp_server_ros2 run mcp_ros_2_server
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。