
RSpace MCP Server
A proof-of-concept server that enables LLM agents to interact with RSpace API endpoints using the Model Context Protocol, allowing AI assistants to access and manipulate research data in RSpace.
README
RSpace MCP server
This is a proof-of-concept MCP server for RSpace that runs locally on your machine. It uses the RSpace Python client and exposes some RSpace API endpoints to LLM agents using the Model Context Protocol.
Installation and configuration
- Clone or download this repository to your local machine
- Install
uv
andpython
- Run
uv sync
to install dependencies - Create a
.env
file in the same folder and addRSPACE_URL=RSpace URL # e.g. https://community.researchspace.com RSPACE_API_KEY=your API key
- Connect your LLM app with the RSpace MCP server
-
For VS Code Copilot, add an mcp.json with the following content
{ "inputs": [ { "type": "promptString", "id": "rspace-apikey", "description": "RSpace API Key", "password": true }, { "type": "promptString", "id": "rspace-url", "description": "RSpace base URL", "password": false } ], "servers": { "rspace": { "command": "uv", "args": [ "--directory", "<full path to this directory>", "run", "main.py" ], "env": { "RSPACE_API_KEY": "${input:rspace-apikey}", "RSPACE_URL": "${input:rspace-url}" } } } }
-
For Claude Desktop, add a claude_desktop_config.json with the following content:
{ "mcpServers": { "rspace": { "command": "/Users/tilomathes/.local/bin/uv", "args": [ "--directory", "<full path to this directory>", "run", "main.py" ], "env": {} } } }
-
Using the RSpace through the MCP server
Please bear in mind that this is a proof of concept and your production use case might require a more specific MCP server configured with specifically fine-tuned tools. The tools provided here in this prototype ...
- do not exhaustively feature the functionality currently available through the RSpace Python client
- might be more than you need for your use case
- might not be optimally configured for how you would like to interact with RSpace
We're curious to learn about how you (want to) use this solution, so let us know about your experiences and learnings or contribute them directly to this repository.
Use cases and applications
You can find descriptions of some usecases and examples in the examples folder and we're looking forward to hearing about new examples and learnings. If you have an experience to share, feel free to contribute.
Contributing new Tools
If you develop new tools or toolsets, feel free to share code snippets or entire tool sets in the tools folder with appropriate annotations.
Acknowledgements
This project is based on code originally created by richarda23.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。