RSS-MCP
Professional RSS/Atom feed management system with AI-powered analytics including sentiment analysis, trend detection, auto-categorization, cross-source verification, automated scheduling, and content export capabilities.
README
🚀 RSS-MCP v3.0
Professional RSS Feed Management System with AI-Powered Analytics
Modern RSS/Atom feed aggregation and analysis tool built for Model Context Protocol (MCP), enabling AI assistants like Claude to manage and analyze news feeds with advanced features.
✨ Features
🎯 Core Features
- RSS Feed Management - Add, list, update, and delete RSS/Atom feeds
- Smart Search - Advanced filtering by keyword, category, date range
- Auto Updates - Automatic feed refresh with configurable scheduling
- SQLite Database - Persistent storage with optimized indexing
🤖 AI-Powered Analytics
- Sentiment Analysis - Detect positive/negative/neutral tone in articles
- Trend Detection - NLP-based topic clustering and trending keywords
- Auto-Categorization - Intelligent AI-based article classification
- Cross-Verification - Compare article coverage across multiple sources
🔔 Automation & Monitoring
- Webhook Notifications - Real-time alerts with keyword filtering
- Feed Scheduling - Cron-based automated updates
- Health Monitoring - Track feed uptime and performance
- Credibility Scoring - Assess feed reliability and quality
📊 Content & Export
- Daily Digest - Generate HTML/Markdown summary reports
- OPML Support - Import/export feed lists for easy migration
- Full Content Extraction - Web scraping for complete articles
- Multiple Export Formats - JSON, CSV, XML support
🚀 Quick Start
Automatic Setup (Recommended)
Windows:
FIRST_TIME_SETUP.bat
START_SERVER.bat
Linux/Mac:
npm run setup
chmod +x start_server.sh
./start_server.sh
Manual Setup
- Install dependencies:
npm install
- Start server (with auto-update):
npm run auto-start
- Or start without updates:
npm start
Server will be available at:
- MCP Endpoint:
http://localhost:3000/mcp - Health Check:
http://localhost:3000/health
📋 Available Tools (26)
<details> <summary><b>🔷 Basic Tools (6)</b></summary>
rss_add- Add new RSS/Atom feedrss_list- List all feedsrss_update- Update feeds (fetch new articles)rss_news- Get articles from specific feedrss_search- Advanced article searchrss_delete- Remove feed
</details>
<details> <summary><b>🔷 Advanced Analytics (5)</b></summary>
rss_breaking- Breaking news detectionrss_duplicates- Find duplicate articlesrss_analytics- Feed statistics and metricsrss_trends- Trending topics analysis (NLP)rss_sentiment_analysis- Emotional tone detection
</details>
<details> <summary><b>🔷 Content & Translation (3)</b></summary>
rss_translate- AI-powered translationrss_media- Extract images and videosrss_full_content- Scrape full article content
</details>
<details> <summary><b>🔷 Comparison & Verification (2)</b></summary>
rss_compare- Compare feed coveragerss_cross_verify- Cross-source verification
</details>
<details> <summary><b>🔷 Export & Reporting (3)</b></summary>
rss_export- Export to JSON/CSV/XMLrss_daily_digest- Generate daily/weekly reportsrss_opml- OPML import/export
</details>
<details> <summary><b>🔷 AI Features (3)</b></summary>
rss_recommend- Feed recommendationsrss_auto_categorize- Auto categorizationrss_credibility_score- Reliability scoring
</details>
<details> <summary><b>🔷 Management & Monitoring (4)</b></summary>
rss_notification_setup- Webhook alertsrss_bookmark- Reading list managementrss_schedule- Automated schedulingrss_health_monitor- Feed health tracking
</details>
🔌 MCP Client Integration
Claude Desktop
Add to your Claude Desktop config:
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"rss-mcp": {
"command": "node",
"args": [
"node_modules/tsx/dist/cli.mjs",
"src/index.ts"
],
"cwd": "/path/to/RSS-MCP"
}
}
}
MCP Inspector (Testing)
npx @modelcontextprotocol/inspector
# Connect to: http://localhost:3000/mcp
💡 Usage Examples
With Claude
Add a feed:
"Add BBC News RSS feed: https://feeds.bbci.co.uk/news/rss.xml"
Analyze trends:
"Show me trending topics from the last 7 days"
Sentiment analysis:
"Analyze the sentiment of today's news"
Generate digest:
"Create a daily digest of top 10 articles in HTML format"
Schedule updates:
"Schedule BBC News to update every 6 hours"
🛠️ Development
npm run dev # Development mode (watch)
npm run dev:http # HTTP transport development
npm run build # TypeScript compilation
npm run clean # Clean build artifacts
npm run update-deps # Update dependencies
📦 Tech Stack
- Runtime: Node.js 18+
- Language: TypeScript
- Database: SQLite (better-sqlite3)
- MCP SDK: @modelcontextprotocol/sdk
- NLP: natural, sentiment
- Web Scraping: cheerio
- Scheduling: cron-parser, node-cron
- Validation: Zod
🏗️ Project Structure
RSS-MCP/
├── src/
│ ├── database/ # Database schema & repositories
│ ├── services/ # Business logic (22 services)
│ ├── tools/ # MCP tools (26 tools)
│ ├── utils/ # Utilities
│ └── index.ts # MCP server
├── data/ # SQLite database (auto-created)
├── START_SERVER.bat # Auto-update launcher (Windows)
├── start_server.sh # Auto-update launcher (Linux/Mac)
├── FIRST_TIME_SETUP.bat # Initial setup script
└── package.json
🔒 Security
- ✅ URL validation (HTTP/HTTPS only)
- ✅ Private IP blacklist
- ✅ MIME type validation
- ✅ Request timeout protection
- ✅ Domain-based rate limiting
- ✅ SQL injection protection (prepared statements)
📚 Documentation
- AUTO_UPDATE_GUIDE.md - Auto-update system guide
- MCP_CLIENT_GUIDE.md - MCP client setup
- CHANGELOG.md - Version history
- KURULUM_REHBERI.md - Installation guide (Turkish)
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built with Model Context Protocol SDK
- Powered by Natural for NLP features
- Uses Cheerio for web scraping
📞 Support
⭐ Star History
If you find this project useful, please consider giving it a star!
Made with ❤️ for the MCP community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。