Rubber Duck MCP
Brings rubber duck debugging to AI-powered IDEs by providing a tool for articulating problems and clarifying logic in natural language. It helps developers and AI agents reveal hidden assumptions and surface solutions through structured self-explanation and reflection.
README
Rubber Duck MCP
Description
Rubber Duck MCP is a Model Context Protocol (MCP) tool that brings the power of rubber duck debugging to your AI development environment. Rubber duck debugging is a proven technique in software engineering, where articulating a problem in natural language—often to an inanimate object like a rubber duck—can illuminate solutions and clarify thought processes. This method, first popularized in The Pragmatic Programmer (Hunt & Thomas, 1999), is widely recognized for its effectiveness in:
- Revealing hidden assumptions and logical errors
- Encouraging step-by-step reasoning
- Facilitating deeper understanding through explanation
- Reducing cognitive load by externalizing thought
"In describing what the code is supposed to do and observing what it actually does, any incongruity between these two becomes apparent." — Wikipedia: Rubber Duck Debugging
By integrating this method into an LLM-powered IDE, Rubber Duck MCP enables developers and AI agents to:
- Debug more effectively by explaining problems to a non-judgmental, always-available listener
- Enhance LLM reasoning by prompting the model to articulate and reflect on its own logic
- Accelerate problem-solving by surfacing solutions through structured self-explanation
For further reading:
- Rubber Duck Debugging (rubberduckdebugging.com)
- The Psychology Underlying the Power of Rubber Duck Debugging
Installation
Prerequisites
- Python 3.8+
- fastmcp (install via pip)
Steps
- Clone the repository:
git clone https://github.com/Omer-Sadeh/RubberDuckMCP.git cd RubberDuckMCP - Create and activate a virtual environment (recommended):
python3 -m venv .venv source .venv/bin/activate - Install dependencies:
pip install -r requirements.txt - Add Rubber Duck MCP to Cursor (or another AI IDE supporting MCP):
- Open your
.cursor/mcp.jsonfile (or the equivalent configuration for your IDE). - Add an entry for Rubber Duck MCP, specifying the venv's Python executable and the path to
RubberMCP.py. For example:{ "mcpServers": { "rubber-duck": { "command": "/absolute/path/to/RubberDuckMCP/.venv/bin/python", "args": [ "/absolute/path/to/RubberDuckMCP/RubberMCP.py" ] } } } - Adjust the
commandandargsfields to match your virtual environment's Python executable and the path toRubberMCP.pyon your system. - Save the file and restart Cursor (or your IDE) to load the new MCP server.
- Open your
Usage
Once configured, use the explain_to_duck tool to articulate your problem or code issue. The Rubber Duck MCP will listen and respond, helping you clarify your thinking and uncover solutions.
License
This project is licensed under the MIT License. Everyone is welcome to contribute, fork, and copy this repository. Collaboration and open-source contributions are highly encouraged!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。