Running Formulas MCP Server
Provides comprehensive running performance calculations including VDOT, training paces, race time predictions, velocity markers, and heart rate zones using Jack Daniels, Greg McMillan, and Riegel methodologies.
README
running-formulas-mcp MCP server
An MCP server with comprehensive tools for running calculations including VDOT, training paces, race time predictions, velocity markers, heart rate zones, and pace conversions. Supports multiple methodologies including Jack Daniels, Greg McMillan, and Riegel's formula.
Features
Jack Daniels Methodology
- VDOT Calculation: Calculate VDOT from race performance using Jack Daniels' formula
- Training Paces: Get recommended training paces (Easy, Marathon, Threshold, Interval, Repetition) for a given VDOT
- Race Time Predictions: Predict race times using Jack Daniels' equivalent performance methodology
McMillan Methodology
- Velocity Markers: Calculate vLT (Lactate Threshold), CV (Critical Velocity), and vVO2 (VO2max velocity)
- Training Paces: Comprehensive training pace zones (Endurance, Stamina, Speed, Sprint) with sub-categories
- Race Time Predictions: Predict race times for all standard distances using McMillan's methodology
- Heart Rate Zones: Calculate training heart rate zones using multiple estimation formulas
Additional Tools
- Riegel's Formula: Race time predictions using Riegel's power law
- Pace Conversions: Convert between different pace and speed formats (min/km, min/mile, km/h, mph)
Tools
Jack Daniels Tools
-
daniels_calculate_vdot: Calculate VDOT from race performance using Jack Daniels' formula.- Input:
distance(float): Distance in meterstime(float): Time in seconds
- Output:
vdot(float): The calculated VDOT value
- Input:
-
daniels_calculate_training_paces: Get recommended training paces for a given VDOT.- Input:
vdot(float): VDOT value
- Output:
easy(object): Easy pace range with lower and upper boundsmarathon(object): Marathon pacethreshold(object): Threshold paceinterval(object): Interval pacerepetition(object): Repetition pace- All paces formatted as "MM:SS/km"
- Input:
-
daniels_predict_race_time: Predict race time using Jack Daniels' equivalent performance methodology.- Input:
current_distance(float): Distance of known performance in meterscurrent_time(float): Time of known performance in secondstarget_distance(float): Distance for race time prediction in meters
- Output:
value(string): Predicted time in "HH:MM:SS" formatformat(string): "HH:MM:SS"time_seconds(float): Time in seconds
- Input:
McMillan Tools
-
mcmillan_calculate_velocity_markers: Calculate velocity markers (vLT, CV, vVO2) from race performance.- Input:
distance(float): Race distance in meterstime(float): Race time in seconds
- Output:
velocity_markers(object): Contains vLT, CV, and vVO2 with pace and description
- Input:
-
mcmillan_predict_race_times: Predict race times for standard distances using McMillan methodology.- Input:
distance(float): Race distance in meterstime(float): Race time in seconds
- Output:
- Dictionary with predicted times for all standard race distances
- Input:
-
mcmillan_calculate_training_paces: Calculate comprehensive training paces using McMillan methodology.- Input:
distance(float): Race distance in meterstime(float): Race time in seconds
- Output:
- Training paces organized by zones (endurance, stamina, speed, sprint)
- Input:
-
mcmillan_heart_rate_zones: Calculate heart rate training zones.- Input:
age(int): Runner's age in yearsresting_heart_rate(int): Resting heart rate in BPMmax_heart_rate(int, optional): Maximum heart rate in BPM
- Output:
- Heart rate zones with both HRMAX and HRRESERVE calculations
- Input:
Additional Tools
-
riegel_predict_race_time: Predict race time using Riegel's formula.- Input:
current_distance(float): Distance of known performance in meterscurrent_time(float): Time of known performance in secondstarget_distance(float): Distance for race time prediction in meters
- Output:
value(string): Predicted time in "HH:MM:SS" formatformat(string): "HH:MM:SS"time_seconds(float): Time in seconds
- Input:
-
convert_pace: Convert between different pace and speed units.- Input:
value(float): The numeric value to convertfrom_unit(string): Source unit ("min_km", "min_mile", "kmh", "mph")to_unit(string): Target unit ("min_km", "min_mile", "kmh", "mph")
- Output:
value(float): Converted numeric valueformatted(string): Human-readable formatted resultunit(string): Target unit descriptor
- Input:
Usage
This server is designed to be used as an MCP stdio server. It does not expose HTTP endpoints directly.
Example: Calculate VDOT for a 5k in 25 minutes
Call the daniels_calculate_vdot tool with:
{
"name": "daniels_calculate_vdot",
"arguments": { "distance": 5000, "time": 1500 }
}
Returns:
{
"vdot": 38.4
}
Example: Get training paces for VDOT 38.4
Call the daniels_calculate_training_paces tool with:
{
"name": "daniels_calculate_training_paces",
"arguments": { "vdot": 38.4 }
}
Returns structured pace data like:
{
"easy": {
"lower": {"value": "5:42", "format": "MM:SS/km"},
"upper": {"value": "6:29", "format": "MM:SS/km"}
},
"marathon": {"value": "5:07", "format": "MM:SS/km"},
"threshold": {"value": "4:50", "format": "MM:SS/km"},
"interval": {"value": "4:32", "format": "MM:SS/km"},
"repetition": {"value": "4:26", "format": "MM:SS/km"}
}
Example: Calculate McMillan velocity markers from 5K performance
Call the mcmillan_calculate_velocity_markers tool with:
{
"name": "mcmillan_calculate_velocity_markers",
"arguments": { "distance": 5000, "time": 1500 }
}
Returns velocity markers:
{
"velocity_markers": {
"vLT": {
"pace": "4:50",
"description": "Velocity at Lactate Threshold (vLT) - sustainable pace for ~1 hour"
},
"CV": {
"pace": "4:32",
"description": "Critical Velocity (CV) - theoretical maximum sustainable pace"
},
"vVO2": {
"pace": "4:15",
"description": "Velocity at VO2max (vVO2) - pace at maximum oxygen uptake"
}
}
}
Example: Predict 10K time using Daniels methodology
Call the daniels_predict_race_time tool with:
{
"name": "daniels_predict_race_time",
"arguments": { "current_distance": 5000, "current_time": 1500, "target_distance": 10000 }
}
Returns:
{
"value": "00:52:07",
"format": "HH:MM:SS",
"time_seconds": 3127.4
}
Example: Calculate heart rate zones for a 30-year-old
Call the mcmillan_heart_rate_zones tool with:
{
"name": "mcmillan_heart_rate_zones",
"arguments": { "age": 30, "resting_heart_rate": 60, "max_heart_rate": 190 }
}
Example: Convert pace from min/km to min/mile
Call the convert_pace tool with:
{
"name": "convert_pace",
"arguments": { "value": 5.0, "from_unit": "min_km", "to_unit": "min_mile" }
}
Returns:
{
"value": 8.047,
"formatted": "8:02",
"unit": "min_mile"
}
Configuration
This server is designed to be used with Claude Desktop or other MCP-compatible clients. See the installation sections below for configuration details.
Installation
{
"mcpServers": {
"running-formulas-mcp": {
"command": "uvx",
"args": ["running-formulas-mcp"]
}
}
}
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。