Runware MCP Server

Runware MCP Server

Enables lightning-fast AI image and video generation, upscaling, background removal, captioning, and masking through the Runware API with automatic model selection and comprehensive validation.

Category
访问服务器

README

Runware MCP Server

A powerful Model Context Protocol (MCP) server that provides lightning fast image and video generation tools using the Runware API. This server supports both SSE (Server-Sent Events) transport for custom claude connector and direct claude desktop installation as well.

Features

Image Generation Tools

  • imageInference: Full-featured image generation with advanced parameters
  • photoMaker: Subject personalization with PhotoMaker technology
  • imageUpscale: High-quality image resolution enhancement
  • imageBackgroundRemoval: Background removal with multiple AI models
  • imageCaption: AI-powered image description generation
  • imageMasking: Automatic mask generation for faces, hands, and people

Video Generation Tools

  • videoInference: Text-to-video and image-to-video generation
  • listVideoModels: Discover available video models
  • getVideoModelInfo: Get detailed model specifications

Utility Tools

  • imageUpload: Upload local images to get Runware UUIDs
  • modelSearch: Search and discover AI models on the platform

Smart Features

  • Automatic Model Selection: I2V uses klingai:5@2, T2V uses google:3@1
  • Input Validation: Prevents Claude upload URL pasting and validates dimensions
  • Comprehensive Error Handling: Clear error messages and guidance

Demo

Watch the demo video to see the Runware MCP server in action:

https://github.com/user-attachments/assets/9732096b-8513-455c-9759-cc88363c42f9

Architecture

[ MCP Client / AI Assistant ]
           |
    (connects via SSE over HTTP)
           |
    [ Uvicorn Server ]
           |
    [ Starlette App ]
           |
    [ FastMCP Server ]
           |
    [ Runware API ]

Prerequisites

  • Python: 3.10 or higher
  • Runware API Key: Get your API key from Runware Dashboard
  • Dependencies: See requirements.txt or pyproject.toml

Installation

1. Clone the Repository

git clone https://github.com/Runware/MCP-Runware.git
cd MCP-Runware

2. Install Dependencies

# Using uv (recommended)
uv venv
source .venv/bin/activate
uv pip install .

# Or using pip
pip install -r requirements.txt

3. Environment Setup

Create a .env file in the project root:

RUNWARE_API_KEY=your_api_key_here

Deployment Methods

Method 1: SSE Server (Recommended for Production)

Docker Deployment

# Build the Docker image
docker build -t runware_mcp_sse .

# Run the container
docker run --rm -p 8081:8081 runware_mcp_sse

Method 2: MCP Install (Direct Integration)

Install in Claude Desktop

# From the project directory
mcp install --with-editable . runware_mcp_server.py

Model Recommendations

Image Generation

  • Default: civitai:943001@1055701 (SDXL-based)
  • PhotoMaker: civitai:139562@344487 (RealVisXL V4.0)
  • Background Removal: runware:109@1 (RemBG 1.4)

Video Generation

  • Image-to-Video (I2V): klingai:5@2 (1920x1080)
  • Text-to-Video (T2V): google:3@1 (1280x720)

You can find all additional models here: Runware Models

Configuration

Environment Variables

  • RUNWARE_API_KEY: Your Runware API key (required)

Input Validation

  • Rejects Claude upload URLs (https://files.*). Claude tends to include base64 strings in its reasoning/thinking process, which rapidly fills the context window with garbage data. Learn more about this issue
  • Supports local file paths, public accessible URLs (make sure it has proper file extension such as JPG, PNG, WEBP, etc), and Runware UUIDs

Support

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选