Runware MCP Server
Enables lightning-fast AI image and video generation, upscaling, background removal, captioning, and masking through the Runware API with automatic model selection and comprehensive validation.
README
Runware MCP Server
A powerful Model Context Protocol (MCP) server that provides lightning fast image and video generation tools using the Runware API. This server supports both SSE (Server-Sent Events) transport for custom claude connector and direct claude desktop installation as well.
Features
Image Generation Tools
imageInference: Full-featured image generation with advanced parametersphotoMaker: Subject personalization with PhotoMaker technologyimageUpscale: High-quality image resolution enhancementimageBackgroundRemoval: Background removal with multiple AI modelsimageCaption: AI-powered image description generationimageMasking: Automatic mask generation for faces, hands, and people
Video Generation Tools
videoInference: Text-to-video and image-to-video generationlistVideoModels: Discover available video modelsgetVideoModelInfo: Get detailed model specifications
Utility Tools
imageUpload: Upload local images to get Runware UUIDsmodelSearch: Search and discover AI models on the platform
Smart Features
- Automatic Model Selection: I2V uses
klingai:5@2, T2V usesgoogle:3@1 - Input Validation: Prevents Claude upload URL pasting and validates dimensions
- Comprehensive Error Handling: Clear error messages and guidance
Demo
Watch the demo video to see the Runware MCP server in action:
https://github.com/user-attachments/assets/9732096b-8513-455c-9759-cc88363c42f9
Architecture
[ MCP Client / AI Assistant ]
|
(connects via SSE over HTTP)
|
[ Uvicorn Server ]
|
[ Starlette App ]
|
[ FastMCP Server ]
|
[ Runware API ]
- Transport: SSE (Server-Sent Events) for real-time communication
- Framework: FastMCP with Starlette web framework
- Server: Uvicorn ASGI server
- API: Direct integration with Runware's AI services
Prerequisites
- Python: 3.10 or higher
- Runware API Key: Get your API key from Runware Dashboard
- Dependencies: See
requirements.txtorpyproject.toml
Installation
1. Clone the Repository
git clone https://github.com/Runware/MCP-Runware.git
cd MCP-Runware
2. Install Dependencies
# Using uv (recommended)
uv venv
source .venv/bin/activate
uv pip install .
# Or using pip
pip install -r requirements.txt
3. Environment Setup
Create a .env file in the project root:
RUNWARE_API_KEY=your_api_key_here
Deployment Methods
Method 1: SSE Server (Recommended for Production)
Docker Deployment
# Build the Docker image
docker build -t runware_mcp_sse .
# Run the container
docker run --rm -p 8081:8081 runware_mcp_sse
Method 2: MCP Install (Direct Integration)
Install in Claude Desktop
# From the project directory
mcp install --with-editable . runware_mcp_server.py
Model Recommendations
Image Generation
- Default:
civitai:943001@1055701(SDXL-based) - PhotoMaker:
civitai:139562@344487(RealVisXL V4.0) - Background Removal:
runware:109@1(RemBG 1.4)
Video Generation
- Image-to-Video (I2V):
klingai:5@2(1920x1080) - Text-to-Video (T2V):
google:3@1(1280x720)
You can find all additional models here: Runware Models
Configuration
Environment Variables
RUNWARE_API_KEY: Your Runware API key (required)
Input Validation
- Rejects Claude upload URLs (
https://files.*). Claude tends to include base64 strings in its reasoning/thinking process, which rapidly fills the context window with garbage data. Learn more about this issue - Supports local file paths, public accessible URLs (make sure it has proper file extension such as JPG, PNG, WEBP, etc), and Runware UUIDs
Support
- Documentation: Runware API Docs
- Models: Browse All Models
- Dashboard: Runware Dashboard
- Issues: Create an issue in this repository
- Email: support@runware.ai
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。