rxjs-mcp-server

rxjs-mcp-server

Execute, debug, and visualize RxJS streams directly from AI assistants like Claude.

Category
访问服务器

README

RxJS MCP Server

⚠️ This is an unofficial community project, not affiliated with RxJS team.

Execute, debug, and visualize RxJS streams directly from AI assistants like Claude.

Features

🚀 Stream Execution

  • Execute RxJS code and capture emissions
  • Timeline visualization with timestamps
  • Memory usage tracking
  • Support for all major RxJS operators

📊 Marble Diagrams

  • Generate ASCII marble diagrams
  • Visualize stream behavior over time
  • Automatic pattern detection
  • Clear legend and explanations

🔍 Operator Analysis

  • Analyze operator chains for performance
  • Detect potential issues and bottlenecks
  • Suggest alternative approaches
  • Categorize operators by function

🛡️ Memory Leak Detection

  • Identify unsubscribed subscriptions
  • Detect missing cleanup patterns
  • Framework-specific recommendations (Angular, React, Vue)
  • Provide proper cleanup examples

💡 Pattern Suggestions

  • Get battle-tested RxJS patterns
  • Framework-specific implementations
  • Common use cases covered:
    • HTTP retry with backoff
    • Search typeahead
    • WebSocket reconnection
    • Form validation
    • State management
    • And more...

Installation

# Install globally
npm install -g @shuji-bonji/rxjs-mcp

# Or use with npx
npx @shuji-bonji/rxjs-mcp

Configuration

Claude Desktop

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "rxjs": {
      "command": "npx",
      "args": ["@shuji-bonji/rxjs-mcp"]
    }
  }
}

VS Code with Continue/Copilot

Add to .vscode/mcp.json:

{
  "mcpServers": {
    "rxjs": {
      "command": "npx",
      "args": ["@shuji-bonji/rxjs-mcp"]
    }
  }
}

Cursor

Add to ~/.cursor/mcp.json:

{
  "mcpServers": {
    "rxjs": {
      "command": "npx",
      "args": ["@shuji-bonji/rxjs-mcp"]
    }
  }
}

Available Tools

execute_stream

Execute RxJS code and capture stream emissions with timeline.

// Example usage
const stream$ = interval(100).pipe(
  take(5),
  map(x => x * 2)
);

generate_marble

Generate ASCII marble diagrams from event data.

// Input: array of timed events
[
  { time: 0, value: 'A' },
  { time: 50, value: 'B' },
  { time: 100, value: 'C' }
]

// Output: A----B----C--|

analyze_operators

Analyze RxJS operator chains for performance and best practices.

// Analyzes chains like:
source$.pipe(
  map(x => x * 2),
  filter(x => x > 10),
  switchMap(x => fetchData(x)),
  retry(3)
)

detect_memory_leak

Detect potential memory leaks and missing cleanup.

// Detects issues like:
- Missing unsubscribe
- No takeUntil operator
- Uncompleted Subjects
- Infinite intervals

suggest_pattern

Get production-ready patterns for common use cases.

Available patterns:

  • http-retry - Resilient HTTP with retry
  • search-typeahead - Debounced search
  • polling - Smart polling with backoff
  • websocket-reconnect - Auto-reconnecting WebSocket
  • form-validation - Reactive form validation
  • state-management - Simple state store
  • cache-refresh - Cache with refresh strategy
  • And more...

Usage Examples

With Claude

User: "Execute this RxJS stream and show me the output"

Claude: I'll execute that RxJS stream for you.

[Uses execute_stream tool]

## Stream Execution Result
✅ Completed
Execution Time: 523ms
Values Emitted: 5

### Emitted Values
[0, 2, 4, 6, 8]

Debugging Memory Leaks

User: "Check this Angular component for memory leaks"

Claude: I'll analyze your component for potential memory leaks.

[Uses detect_memory_leak tool]

## Memory Leak Analysis
⚠️ Potential leaks detected

1. 🔴 subscription (high severity)
   - Found 3 subscribe() calls but only 1 unsubscribe()
   - Fix: Use takeUntil pattern with destroy$ subject

Getting Patterns

User: "Show me how to implement search with RxJS"

Claude: I'll show you the search typeahead pattern.

[Uses suggest_pattern tool with useCase: 'search-typeahead']

## Search Typeahead with Debounce
[Full implementation with explanation]

Security

The execute_stream tool runs user-provided code in an isolated Worker thread to prevent:

  • Main process pollution
  • Resource leaks from infinite loops or timers
  • Access to sensitive Node.js APIs (process, fs, etc.)

Execution is forcefully terminated if it exceeds the configured timeout.

Development

# Clone the repository
git clone https://github.com/shuji-bonji/rxjs-mcp-server
cd rxjs-mcp-server

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test              # Unit tests (vitest)
npm run test:mcp      # MCP integration test
npm run test:inspector # MCP Inspector (GUI)

# Run in development
npm run dev

Integration with Other MCP Servers

RxJS MCP Server works great alongside:

  • Angular MCP - For Angular project scaffolding
  • TypeScript MCP - For type checking
  • ESLint MCP - For code quality

Future Meta-MCP integration will allow seamless coordination between these tools.

Architecture

┌─────────────────┐
│   AI Assistant  │
│   (Claude, etc) │
└────────┬────────┘
         │
    MCP Protocol
         │
┌────────┴────────┐
│  RxJS MCP Server│
├─────────────────┤
│ • execute_stream│
│ • generate_marble│
│ • analyze_operators│
│ • detect_memory_leak│
│ • suggest_pattern│
└─────────────────┘

Contributing

Contributions are welcome! Please feel free to submit a PR.

License

MIT

Author

Shuji Bonji

Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选