SACL MCP Server

SACL MCP Server

Provides bias-aware code retrieval for AI assistants by detecting textual bias in code search, semantically augmenting code understanding beyond comments and docstrings, and intelligently reranking results based on functional relevance rather than documentation quality.

Category
访问服务器

README

SACL MCP Server

Semantic-Augmented Reranking and Localization for Code Retrieval

A Model Context Protocol (MCP) server that implements the SACL research framework to provide bias-aware code retrieval for AI coding assistants like Claude Code, Cursor, and other MCP-enabled tools.

🎯 Overview

SACL addresses the critical problem of textual bias in code retrieval systems. Traditional systems over-rely on surface-level features like docstrings, comments, and variable names, leading to biased results that favor well-documented code regardless of functional relevance.

Key Features

  • 🧠 Bias Detection: Identifies over-reliance on textual features
  • 🔍 Semantic Augmentation: Enriches code understanding beyond surface text
  • 📊 Intelligent Reranking: Prioritizes functional relevance over documentation
  • 🎯 Code Localization: Pinpoints functionally relevant code segments
  • 🔗 Relationship Analysis: Maps code dependencies and relationships
  • 🎨 Context-Aware Retrieval: Returns results with related components
  • 🚀 Agent-Controlled Updates: Explicit file updates for Docker compatibility
  • 🗄️ Knowledge Graph: Persistent semantic storage with Graphiti/Neo4j
  • 🔧 MCP Integration: Works with Claude Code, Cursor, and other AI tools

🏗️ Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   AI Assistant  │────│  SACL MCP Server │────│   Graphiti/Neo4j │
│ (Claude, Cursor)│    │                 │    │  Knowledge Graph │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                              │
                    ┌─────────────────┐
                    │  SACL Framework │
                    │                 │
                    │ • Bias Detection│
                    │ • Semantic Aug. │
                    │ • Reranking     │
                    │ • Localization  │
                    │ • Relationships │
                    │ • Context-Aware │
                    └─────────────────┘

🚀 Quick Start

Prerequisites

  • Node.js 18+
  • Neo4j database
  • OpenAI API key

Installation

# Clone the repository
git clone <repository-url>
cd sacl

# Install dependencies
npm install

# Copy environment configuration
cp .env.example .env

# Edit .env with your settings
OPENAI_API_KEY=your_key_here
NEO4J_URI=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=your_password

Using Docker (Recommended)

# Start Neo4j and SACL server
docker-compose up -d

# Check logs
docker-compose logs -f sacl-mcp-server

Manual Setup

# Build the project
npm run build

# Start the server
npm start

🔧 Configuration

Environment Variables

Variable Description Default
OPENAI_API_KEY OpenAI API key (required) -
SACL_REPO_PATH Repository to analyze Current directory
SACL_NAMESPACE Unique namespace Auto-generated
SACL_LLM_MODEL LLM model for analysis gpt-4
SACL_EMBEDDING_MODEL Embedding model text-embedding-3-small
SACL_BIAS_THRESHOLD Bias detection sensitivity (0-1) 0.5
SACL_MAX_RESULTS Maximum search results 10
SACL_CACHE_ENABLED Enable embedding cache true
NEO4J_URI Neo4j connection URI bolt://localhost:7687
NEO4J_USER Neo4j username neo4j
NEO4J_PASSWORD Neo4j password password

🎮 Usage

MCP Tools

The SACL server provides comprehensive MCP tools for bias-aware code analysis:

1. analyze_repository

Performs full SACL analysis of a repository:

{
  "repositoryPath": "/path/to/repo",
  "incremental": false
}

2. query_code

Bias-aware code search with optional context:

{
  "query": "function that sorts arrays efficiently",
  "repositoryPath": "/path/to/repo",
  "maxResults": 10,
  "includeContext": false  // Set true for relationship context
}

3. query_code_with_context 🆕

Enhanced search with relationship context and related components:

{
  "query": "authentication middleware",
  "repositoryPath": "/path/to/repo",
  "maxResults": 10,
  "includeRelated": true
}

4. update_file 🆕

Explicitly update single file analysis when changes are made:

{
  "filePath": "src/services/auth.js",
  "changeType": "modified"  // "created", "modified", or "deleted"
}

5. update_files 🆕

Batch update multiple files:

{
  "files": [
    { "filePath": "src/index.js", "changeType": "modified" },
    { "filePath": "src/utils/new.js", "changeType": "created" }
  ]
}

6. get_relationships 🆕

Analyze code relationships and dependencies:

{
  "filePath": "src/controllers/UserController.js",
  "maxDepth": 3,
  "relationshipTypes": ["imports", "calls", "extends"]  // Optional filter
}

7. get_file_context 🆕

Get comprehensive context for a file:

{
  "filePath": "src/models/User.js",
  "includeSnippets": true  // Include code previews
}

8. get_bias_analysis

Detailed bias metrics and debugging:

{
  "filePath": "src/utils/sort.js"  // Optional
}

9. get_system_stats

System performance and statistics:

{}

MCP Client Configuration

Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "sacl": {
      "command": "node",
      "args": ["/path/to/sacl/dist/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-key",
        "NEO4J_URI": "bolt://localhost:7687",
        "NEO4J_USER": "neo4j",
        "NEO4J_PASSWORD": "password"
      }
    }
  }
}

Cursor IDE

Configure in your Cursor settings to connect to the SACL MCP server.

📊 SACL Framework

Stage 1: Bias Detection

Identifies three types of textual bias:

  • Docstring Dependency: Over-reliance on documentation
  • Identifier Name Bias: Focusing on variable/function names
  • Comment Over-reliance: Prioritizing commented code

Stage 2: Semantic Augmentation

Enriches code representations with:

  • Functional Signatures: What the code actually does
  • Behavior Patterns: Computational patterns (iteration, recursion, etc.)
  • Structural Features: Complexity metrics, AST analysis
  • Augmented Embeddings: Bias-adjusted semantic vectors

Stage 3: Reranking & Localization

  • Bias-Aware Ranking: Reduces textual weight based on bias score
  • Code Localization: Identifies functionally relevant segments
  • Semantic Similarity: Uses augmented embeddings
  • Functional Relevance: Considers computational patterns

Stage 4: Relationship Analysis 🆕

Maps code relationships and dependencies:

  • Import/Export Analysis: Module dependencies and exports
  • Function Call Mapping: Call graphs and method invocations
  • Class Inheritance: Extends/implements relationships
  • Dependency Tracking: External and internal dependencies
  • Context-Aware Results: Related components with each query result

🧪 Example Workflow

  1. Repository Analysis:

    AI Assistant → analyze_repository → SACL processes all files → Knowledge graph populated
    
  2. Code Query with Context:

    AI Assistant → query_code_with_context("authentication") → SACL retrieval → Context-aware results
    
  3. File Updates:

    AI modifies code → update_file("src/auth.js", "modified") → SACL re-analyzes → Relationships updated
    
  4. Relationship Exploration:

    AI Assistant → get_relationships("UserController.js") → Dependency graph → Related components
    
  5. Results Include:

    • Original textual similarity score
    • Semantic similarity score
    • Bias-adjusted final score
    • Localized code regions
    • Related components and dependencies
    • Context explanation with relationship importance
    • Explanation of ranking decisions

📈 Performance

Based on SACL research benchmarks:

  • 12.8% improvement in Recall@1 on HumanEval
  • 9.4% improvement on MBPP
  • 7.0% improvement on SWE-Bench-Lite
  • P95 latency: <300ms for retrieval operations

🔍 Bias Analysis Example

🧠 SACL Bias Analysis

File: src/algorithms/quicksort.js

Bias Metrics:
• Overall Bias Score: 73.2% 🔴
• Semantic Pattern: Recursive divide-and-conquer sorting
• Functional Signature: Array input → sorted array output

Bias Indicators:
• docstring_dependency: High docstring dependency (15.3% of code)
• identifier_name_bias: High reliance on descriptive names
• comment_over_reliance: Excessive comments (18.7% of code)

💡 Improvement Suggestions:
• Reduce reliance on variable naming for semantic understanding
• Focus on structural patterns over comments
• Improve functional signature extraction

🛠️ Development

Project Structure

src/
├── core/                    # SACL framework implementation
│   ├── BiasDetector.ts      # Textual bias detection
│   ├── SemanticAugmenter.ts # Semantic enhancement
│   ├── SACLReranker.ts      # Reranking and localization with context
│   └── SACLProcessor.ts     # Main orchestrator with relationship support
├── mcp/                     # MCP server implementation
│   └── SACLMCPServer.ts     # MCP protocol handlers (9 tools)
├── graphiti/                # Knowledge graph integration
│   └── GraphitiClient.ts    # Graphiti/Neo4j interface with relationships
├── utils/                   # Utility modules
│   └── CodeAnalyzer.ts      # AST analysis and relationship extraction
├── types/                   # TypeScript type definitions
│   ├── index.ts             # Core types and interfaces
│   └── relationships.ts     # Relationship type definitions
└── index.ts                 # Application entry point

Building

npm run build    # Build TypeScript
npm run dev      # Development with auto-reload
npm run lint     # Code linting
npm run format   # Code formatting
npm test         # Run tests

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Implement changes following SACL methodology
  4. Add tests for new functionality
  5. Submit a pull request

📚 Research Background

This implementation is based on the research paper:

"SACL: Understanding and Combating Textual Bias in Code Retrieval with Semantic-Augmented Reranking and Localization"

  • Authors: Dhruv Gupta, Gayathri Ganesh Lakshmy, Yiqing Xie
  • arXiv: 2506.20081v2

Key Research Contributions

  1. Systematic Bias Detection: Identifies textual bias through feature masking
  2. Semantic Augmentation: Enhances code understanding beyond text
  3. Bias-Aware Ranking: Reduces surface-level feature dependency
  4. Localization: Pinpoints functionally relevant code regions

🔗 Integration

Supported AI Tools

  • Claude Code: Direct MCP integration
  • Cursor: MCP server connection
  • VS Code Extensions: Via MCP protocol
  • Custom Tools: Any MCP-compatible client

Language Support

  • JavaScript/TypeScript: Full AST analysis with relationship extraction

    • Import/export tracking
    • Function call analysis
    • Class inheritance detection
    • Dynamic imports support
  • Python: Regex-based analysis

    • Import statement parsing
    • Class inheritance detection
    • Function call patterns
  • Other Languages (Java, C++, C#, Go, Rust): Basic analysis

    • Import/include statements
    • Class declarations
    • Function definitions
  • Extensible: Easy to add new language analyzers

📄 License

MIT License - see LICENSE file for details.

🆘 Support

  • Issues: GitHub Issues
  • Documentation: See /docs directory
  • Research Paper: arXiv:2506.20081v2

🔮 Future Enhancements

  • [ ] Multi-language AST parsing for all supported languages
  • [ ] Real-time Graphiti integration (currently uses mock methods)
  • [ ] Semantic relationship detection beyond syntactic analysis
  • [ ] Visual relationship graphs in MCP responses
  • [ ] Custom bias threshold configuration per project
  • [ ] Integration with Language Server Protocol (LSP)
  • [ ] Advanced localization algorithms with machine learning
  • [ ] Performance optimizations for large codebases (>10k files)
  • [ ] Real-time bias notifications during code writing
  • [ ] Custom relationship type definitions

SACL MCP Server - Bringing research-backed bias-aware code retrieval to AI coding assistants.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选