Satellite MCP Server
Enables satellite orbital mechanics calculations including visibility predictions, access window analysis, and TLE generation from natural language descriptions. Supports 200+ world cities and multiple orbit types (LEO, MEO, GEO, SSO, Molniya, Polar).
README
Satellite MCP Server
A comprehensive Model Context Protocol (MCP) server for satellite orbital mechanics calculations with natural language processing capabilities.
✨ Key Features
- 🛰️ Satellite Access Window Calculations - Calculate when satellites are visible from ground locations
- 🌍 World Cities Database - Built-in database of 200+ cities worldwide for easy location lookup
- 🗣️ Natural Language Processing - Parse orbital parameters from text like "satellite at 700km in SSO over London"
- 📡 TLE Generation - Generate Two-Line Elements from orbital descriptions
- 🌅 Lighting Analysis - Ground and satellite lighting conditions (civil, nautical, astronomical twilight)
- 📊 Bulk Processing - Process multiple satellites and locations from CSV data
- 🚀 6 Orbit Types - Support for LEO, MEO, GEO, SSO, Molniya, and Polar orbits
🚀 Quick Start
Using Docker (Recommended)
# Clone the repository
git clone <repository-url>
cd mcp-orbit
# Build the Docker image
make docker-build
# Run the MCP server
make docker-run
Local Installation
# Install dependencies
make install
# Run the MCP server
make run
🔌 Connecting to the MCP Server
The server communicates via JSON-RPC 2.0 over stdio. Here are the connection methods:
Claude Desktop Integration
Add to your Claude Desktop MCP configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"satellite-mcp-server": {
"command": "docker",
"args": ["run", "--rm", "-i", "satellite-mcp-server:latest"]
}
}
}
Direct Docker Connection
# Interactive mode
docker run -it --rm satellite-mcp-server:latest
# Pipe commands
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}' | \
docker run --rm -i satellite-mcp-server:latest
Local Python Connection
# If running locally without Docker
python -m src.mcp_server
💬 Example Usage in LLMs
Example 1: Basic Satellite Pass Prediction
User Prompt:
"When will the ISS be visible from London tomorrow?"
MCP Tool Call:
{
"tool": "calculate_access_windows_by_city",
"arguments": {
"city_name": "London",
"tle_line1": "1 25544U 98067A 24001.50000000 .00001234 00000-0 12345-4 0 9999",
"tle_line2": "2 25544 51.6400 123.4567 0001234 12.3456 347.6543 15.49011999123456",
"start_time": "2024-01-02T00:00:00Z",
"end_time": "2024-01-03T00:00:00Z"
}
}
Response: The ISS will be visible from London 4 times tomorrow, with the best pass at 19:45 UTC reaching 78° elevation in the southwest sky during civil twilight.
Example 2: Natural Language Orbital Design
User Prompt:
"Create a sun-synchronous satellite at 700km altitude and show me when it passes over Tokyo."
MCP Tool Calls:
- Parse orbital elements:
{
"tool": "parse_orbital_elements",
"arguments": {
"orbital_text": "sun-synchronous satellite at 700km altitude"
}
}
- Calculate access windows:
{
"tool": "calculate_access_windows_from_orbital_elements_by_city",
"arguments": {
"orbital_text": "sun-synchronous satellite at 700km altitude",
"city_name": "Tokyo",
"start_time": "2024-01-01T00:00:00Z",
"end_time": "2024-01-02T00:00:00Z"
}
}
Response: Generated SSO satellite (98.16° inclination, 98.6 min period) with 14 passes over Tokyo in 24 hours, including 6 daylight passes and 8 during various twilight conditions.
Example 3: Bulk Satellite Analysis
User Prompt:
"I have a CSV file with ground stations and want to analyze coverage for multiple satellites."
MCP Tool Call:
{
"tool": "calculate_bulk_access_windows",
"arguments": {
"locations_csv": "name,latitude,longitude,altitude\nMIT,42.3601,-71.0589,43\nCaltechm,34.1377,-118.1253,237",
"satellites_csv": "name,tle_line1,tle_line2\nISS,1 25544U...,2 25544...\nHubble,1 20580U...,2 20580...",
"start_time": "2024-01-01T00:00:00Z",
"end_time": "2024-01-02T00:00:00Z"
}
}
🛠️ Available Tools
calculate_access_windows- Basic satellite visibility calculationscalculate_access_windows_by_city- City-based satellite passescalculate_bulk_access_windows- Multi-satellite/location analysisparse_orbital_elements- Natural language orbital parameter parsingcalculate_access_windows_from_orbital_elements- Access windows from orbital textcalculate_access_windows_from_orbital_elements_by_city- Combined orbital elements + city lookupsearch_cities- Find cities in the world databasevalidate_tle- Validate Two-Line Element dataget_orbit_types- Available orbit type definitions
🗂️ Project Structure
/
├── src/
│ ├── mcp_server.py # MCP server implementation
│ ├── satellite_calc.py # Core orbital mechanics calculations
│ └── world_cities.py # World cities database
├── docs/ # Documentation
├── Dockerfile # Container definition
├── docker-compose.yml # Multi-container setup
└── Makefile # Build automation
📚 Dependencies
- Skyfield - Satellite position calculations
- NumPy - Numerical computations
- MCP - Model Context Protocol implementation
- Python 3.8+ - Runtime environment
🤝 Contributing
This is a specialized MCP server for satellite orbital mechanics. For issues or enhancements, please check the documentation in the docs/ directory.
📄 License
[Add your license information here]
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。