SceneCraft MCP

SceneCraft MCP

Converts plain text scripts into structured storyboards with shot breakdowns using LLMs, and optionally generates visual frames via Stable Diffusion and assembles them into vertical videos for rapid content prototyping.

Category
访问服务器

README

SceneCraft MCP — Text → Storyboard → Video (Test Version)

Author: snippetWizard

SceneCraft MCP turns plain text into a visual plan (storyboard) and—optionally—an assembled vertical video. It exposes the pipeline both as Python modules and as an MCP tool so agentic clients can orchestrate it.

  • Text-to-Scene breakdown using an LLM (OpenAI, Ollama, or an offline Mock).
  • Pydantic-backed models for Shots, Scenes, and Storyboards.
  • Optional Stable Diffusion frame generation + MoviePy assembly into a vertical MP4.
  • File-based storage of generated storyboards.
  • MCP server (optional) so tools-savvy LLMs can call it directly.

This repository is a test version. More features are on the way, including cloud uploads and cross-platform social scheduling.

What’s MCP? The Model Context Protocol is a lightweight protocol that lets LLMs talk to local/remote tools securely and consistently. Here, we provide a simple MCP server exposing a “create_storyboard” tool.

Why this project? Planning shots is time-consuming. The idea came from wanting a zero-friction loop for solo creators: describe a scene → get a structured shot plan → (optionally) generate visuals → assemble a draft video. It’s a rapid prototyping lane for script-to-screen experiments.

Pipeline Overview (Files & Flow)

  1. Input (your text/script)

    • Entry points:
      • examples/test_scene_local.py:1 — generates a storyboard only.
      • examples/script_to_video.py:1 — full storyboard → frames → video demo.
  2. Parse Script → Scenes

    • scenecraft_mcp/engine/script_parser.py:1
      • parse_script(script) — minimal parser that treats the whole text as one scene (replaceable later with a real slugline parser).
  3. Plan Shots (LLM)

    • scenecraft_mcp/engine/shot_planner.py:1
      • plan_shots(scene_text, scene_number, style_preset)list[Shot]
      • _build_system_prompt(...), _build_user_prompt(...) craft prompt instructions.
      • Uses scenecraft_mcp/llm/factory.py:1get_llm_client() to select provider.
    • Providers (implement LLMClient):
      • scenecraft_mcp/llm/base.py:1 — abstract interface (complete_json, complete_text).
      • scenecraft_mcp/llm/openai_client.py:1 — calls OpenAI Chat Completions and parses strict JSON.
      • scenecraft_mcp/llm/ollama_client.py:1 — calls local Ollama /api/chat and parses JSON.
      • scenecraft_mcp/llm/mock_client.py:1 — offline, deterministic mock for local demos (default in .env).
    • Config:
      • scenecraft_mcp/config.py:1LLMProvider enum (openai, ollama, mock) and env-driven settings.
  4. Data Models & Storage

    • scenecraft_mcp/models.py:1 — Pydantic models: Shot, Scene, Storyboard, enums (ShotType, CameraAngle, etc.).
    • scenecraft_mcp/storage/repository.py:1 — repo interface.
    • scenecraft_mcp/storage/file_repository.py:1 — JSON-based persistence under ~/.scenecraft_mcp/projects/.
    • scenecraft_mcp/utils/ids.py:1generate_project_id() like proj_ab12cd34.
  5. Optional: Frame Generation (Stable Diffusion)

    • scenecraft_mcp/video/framegen_sd.py:1SDFrameGenerator.generate_frame(...)
      • Loads a Stable Diffusion pipeline (e.g., runwayml/stable-diffusion-v1-5) on CPU/GPU.
      • Produces stylized vertical 9:16 PNGs per shot.
  6. Optional: Video Assembly (MoviePy)

    • scenecraft_mcp/video/assembler.py:1assemble_video(frames, output_path, fps=24)
      • Resizes and concatenates the per-shot images into a vertical MP4 (requires ffmpeg).
  7. MCP Server (Optional Integration)

    • scenecraft_mcp/mcp_server.py:1build_server() with a create_storyboard(script, title=None) tool.
    • Expose storyboard creation to MCP-compatible hosts (e.g., Claude Desktop) once mcp is installed.

Installation

Core (storyboard + MCP):

pip install -r requirements.txt

Optional (frames + video):

  • ffmpeg (required by MoviePy)
  • Python packages:
pip install moviepy diffusers
# Then install PyTorch appropriate for your system:
# CPU-only example:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu

Tip: For NVIDIA GPUs, use the official PyTorch site to get the correct CUDA wheels: https://pytorch.org/get-started/locally/

Configuration

Copy .env (already included) and set a provider:

# LLM Provider (openai / ollama / mock)
LLM_PROVIDER=mock

# OpenAI
OPENAI_API_KEY=sk-your-key
OPENAI_MODEL=gpt-4.1-mini

# Ollama
OLLAMA_MODEL=llama3
OLLAMA_BASE_URL=http://127.0.0.1:11434

# Performance
LOW_LATENCY_MODE=true
  • mock runs fully offline for predictable local demos.
  • ollama requires ollama serve and a pulled model like llama3.
  • openai requires a valid OPENAI_API_KEY.

Quickstart

Storyboard-only (offline by default):

python examples/test_scene_local.py

Storyboard → Frames → Video (requires optional deps):

python examples/script_to_video.py

Outputs:

  • Storyboard JSON: ~/.scenecraft_mcp/projects/<project_id>.json
  • Frames: outputs/frames/*.png
  • Video: outputs/videos/<project_id>.mp4

Using the MCP Server (optional)

pip install mcp
python -m scenecraft_mcp.mcp_server

Connect this server to an MCP-compatible host (e.g., Claude Desktop). The tool create_storyboard accepts script and returns { project_id, scene_count, shot_count }.

What This Solves

  • Fast ideation: turn a draft description into a structured shot plan.
  • Consistent visual language: shot types, angles, durations captured as data, not prose.
  • Extensible pipeline: swap LLMs, models, or frame generators without changing the flow.
  • Automation-ready: MCP tool interface and file-based outputs are easy to orchestrate.

Roadmap (Test Version — Coming Soon)

  • Cloud uploads after video generation (S3/GCS/Azure).
  • Automation script to fetch by id/date and auto-post to YouTube and Instagram.
  • Schedule entire months of content in one pass.
  • Better text-to-scene parser for multi-scene scripts.
  • Transitions, captions/overlays, TTS/VO integration, music bed.
  • More MCP tools and richer schemas.

Follow along — more MCP projects are coming soon. Star and follow on GitHub: snippetWizard. Stay tuned!

File-by-File Quick Reference

  • scenecraft_mcp/engine/script_parser.py:1parse_script(script) → minimal single-scene dict.
  • scenecraft_mcp/engine/shot_planner.py:1plan_shots(...) calls LLM to output ShotPlan.
  • scenecraft_mcp/llm/factory.py:1get_llm_client() from env-configured provider.
  • scenecraft_mcp/llm/openai_client.py:1 — OpenAI JSON completions.
  • scenecraft_mcp/llm/ollama_client.py:1 — Ollama JSON completions.
  • scenecraft_mcp/llm/mock_client.py:1 — offline JSON synthesis for demos.
  • scenecraft_mcp/models.py:1 — core Pydantic models and enums.
  • scenecraft_mcp/storage/file_repository.py:1 — save/load Storyboard to ~/.scenecraft_mcp/projects/.
  • scenecraft_mcp/video/framegen_sd.py:1 — Stable Diffusion image generator per shot.
  • scenecraft_mcp/video/assembler.py:1 — MoviePy image sequence → MP4.
  • scenecraft_mcp/mcp_server.py:1 — MCP tool create_storyboard.
  • examples/test_scene_local.py:1 — storyboard demo.
  • examples/script_to_video.py:1 — full pipeline demo.

License

This project is licensed under the MIT License. See LICENSE for details.

Copyright (c) 2025 snippetWizard

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选