Scholarly Research MCP Server
Enables comprehensive academic research by searching and analyzing papers from PubMed, Google Scholar, ArXiv, and JSTOR. Provides full-text access, citation management, and research organization through five powerful consolidated tools.
README
Scholarly Research MCP Server
A powerful, consolidated research tool that helps you find and analyze academic research papers from PubMed, Google Scholar, ArXiv, and JSTOR through just 5 powerful tools.
What This Tool Does
This tool helps you:
- Find research papers on any topic from multiple academic databases
- Read full papers when available (not just abstracts)
- Extract key information like quotes, statistics, and findings
- Get citations in the format you need for your work
- Search within papers to find specific information
- Organize research with customizable preferences
Key Features
- 5 Consolidated Tools: Powerful, multi-functional tools instead of 24 separate ones
- Multi-Source Search: PubMed, Google Scholar, ArXiv, and JSTOR
- User Preferences: Customizable search and display settings
- Content Extraction: Full-text paper access and analysis
- Citation Management: Multiple citation format support
- Error Handling: Robust fallback mechanisms
Project Structure
This tool is organized into several key components:
Core Components
src/
├── index.ts # Main server entry point (consolidated)
├── adapters/ # Data source connectors
│ ├── pubmed.ts # PubMed API integration
│ ├── google-scholar.ts # Google Scholar web scraping
│ ├── google-scholar-firecrawl.ts # Firecrawl integration
│ ├── arxiv.ts # ArXiv integration
│ ├── unified-search.ts # Basic multi-source search
│ ├── enhanced-unified-search.ts # Advanced multi-source search
│ └── preference-aware-unified-search.ts # User preference integration
├── preferences/ # User preference management
│ └── user-preferences.ts # Preference storage and retrieval
└── models/ # Data structures and interfaces
├── paper.ts # Paper data models
├── search.ts # Search parameter models
└── preferences.ts # Preference models
Documentation
docs/
├── README.md # Documentation index and overview
├── CONSOLIDATION_GUIDE.md # Complete consolidation guide
├── TOOL_CONSOLIDATION.md # Quick tool mapping reference
├── PROJECT_STRUCTURE.md # Clean project organization
├── API_REFERENCE.md # Complete API documentation
├── ARCHITECTURE.md # Technical system design
├── DATA_MODELS.md # Data structure definitions
├── DEVELOPMENT.md # Developer setup guide
└── TROUBLESHOOTING.md # Problem-solving guide
Testing
tests/
├── test-preferences.js # Preference system tests
├── test-all-tools-simple.sh # Bash test runner (recommended)
├── test_all_tools.py # Python test runner
└── test-all-tools.js # JavaScript test runner
Configuration
├── package.json # Project dependencies and scripts
├── tsconfig.json # TypeScript configuration
├── .env.example # Environment variables template
└── README.md # This file
Available Tools
The server provides 5 consolidated MCP tools that replace the previous 24 individual tools:
1. research_search
Comprehensive research paper search across multiple sources with advanced filtering and unified results.
Combines: All individual search tools from PubMed, Google Scholar, ArXiv, and JSTOR Parameters: Query, sources, filters, display options, sorting
2. paper_analysis
Get comprehensive paper information, full text, and analysis including quotes, statistics, and findings.
Combines: Paper retrieval, content extraction, and analysis tools Parameters: Identifier, analysis type, quote limits, section lengths
3. citation_manager
Generate citations in multiple formats and get citation information including counts and related papers.
Combines: Citation tools, citation counting, and related paper discovery Parameters: Identifier, action, format, related paper limits
4. research_preferences
Manage research preferences including source priorities, search settings, display options, and caching.
Combines: All preference management tools Parameters: Action, category, various preference values
5. web_research
Perform web-based research using Firecrawl for reliable content extraction and analysis.
Combines: Firecrawl integration and web research tools Parameters: Action, targets, options, crawling limits
Quick Start
Option 1: Use Through AI Assistants (Easiest - No Setup Required)
If you're not comfortable with technical setup, you can use this tool through AI assistants like:
- Claude (Anthropic)
- ChatGPT (OpenAI)
- Cursor (Code editor with AI)
These assistants can use this tool to help you find research papers without any setup on your part.
Option 2: Set Up MCP on Your Computer (For Advanced Users)
This option lets you use the tool directly with AI assistants on your computer. It's like giving your AI assistant a special tool to find research papers.
Setting Up MCP (Model Context Protocol)
MCP is like a "language" that lets AI assistants talk to tools on your computer. Think of it like installing a special app that your AI assistant can use.
What You Need
- A computer (Windows, Mac, or Linux)
- An AI assistant that supports MCP (like Claude Desktop, Cursor, or others)
- Basic computer skills (downloading files, running programs)
Step-by-Step Setup
-
Download the tool
git clone https://github.com/aringadre76/mcp-for-research.git cd mcp-for-research -
Install dependencies
npm install -
Build the tool
npm run build -
Configure your AI assistant
- Find "MCP Servers" or "Tools" in your AI assistant's settings
- Add a new MCP server
- Set the command to:
node dist/index.js - Set the working directory to your project folder
-
Test the setup
npm run test:all-tools-bash
Usage Examples
Search for Papers
{
"method": "tools/call",
"params": {
"name": "research_search",
"arguments": {
"query": "machine learning",
"sources": ["pubmed", "arxiv"],
"maxResults": 15,
"startDate": "2020/01/01"
}
}
}
Analyze a Paper
{
"method": "tools/call",
"params": {
"name": "paper_analysis",
"arguments": {
"identifier": "12345678",
"analysisType": "complete",
"maxQuotes": 20
}
}
}
Get Citations
{
"method": "tools/call",
"params": {
"name": "citation_manager",
"arguments": {
"identifier": "12345678",
"action": "all",
"format": "apa"
}
}
}
Benefits of the Consolidated Approach
✅ 80% reduction in tool count (24 → 5)
✅ Easier to remember and use
✅ More powerful - multiple operations in single calls
✅ Better performance - fewer tool registrations
✅ Easier maintenance - less code duplication
✅ Consistent interface - similar parameter patterns
Migration from Previous Version
The consolidated tools are backward compatible - you can still access the same functionality, just through fewer, more powerful tools. Each consolidated tool accepts parameters that let you specify exactly what you want to do.
| Old Tool | New Tool | Notes |
|---|---|---|
search_papers |
research_search |
Use sources: ["pubmed"] |
get_paper_by_id |
paper_analysis |
Use analysisType: "basic" |
get_full_text |
paper_analysis |
Use analysisType: "full-text" |
get_citation |
citation_manager |
Use action: "generate" |
set_source_preference |
research_preferences |
Use action: "set", category: "source" |
Troubleshooting
Common Issues
Q: The tool doesn't start
A: Make sure you've run npm install and npm run build first.
Q: My AI assistant can't find the tools A: Check that the MCP server path is correct in your AI assistant's settings.
Q: Searches return no results A: Try different search terms or check if your sources are enabled in preferences.
Q: How do I get papers in a specific format? A: Use the citation tools to get the paper in the format you need (APA, MLA, etc.).
Development
Running Tests
npm run test:all-tools-bash
Building
npm run build
Development Mode
npm run dev
Contributing
We welcome contributions! Please see our contributing guidelines and feel free to submit issues or pull requests.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Documentation
For comprehensive documentation, guides, and technical details, see the docs/ directory:
- Documentation Overview - Complete documentation index
- Consolidation Guide - Detailed explanation of the new approach
- Tool Reference - Quick mapping from old to new tools
- API Reference - Complete tool documentation
- Project Structure - Clean project organization
Support
If you need help:
- Check the troubleshooting section above
- Look at the documentation in the
docs/folder - Open an issue on GitHub
- Check the CHANGELOG.md for recent updates
Version History
- v2.0.0: Consolidated 24 tools into 5 powerful tools
- v1.4.x: Previous version with 24 individual tools
- v1.0.x: Initial release
Note: This tool is designed to be easy to use while providing powerful research capabilities. The consolidated approach makes it simpler to use while maintaining all the functionality of the previous version.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。