Scholarly Research MCP Server

Scholarly Research MCP Server

Enables comprehensive academic research by searching and analyzing papers from PubMed, Google Scholar, ArXiv, and JSTOR. Provides full-text access, citation management, and research organization through five powerful consolidated tools.

Category
访问服务器

README

Scholarly Research MCP Server

A powerful, consolidated research tool that helps you find and analyze academic research papers from PubMed, Google Scholar, ArXiv, and JSTOR through just 5 powerful tools.

NPM GitHub License

What This Tool Does

This tool helps you:

  • Find research papers on any topic from multiple academic databases
  • Read full papers when available (not just abstracts)
  • Extract key information like quotes, statistics, and findings
  • Get citations in the format you need for your work
  • Search within papers to find specific information
  • Organize research with customizable preferences

Key Features

  • 5 Consolidated Tools: Powerful, multi-functional tools instead of 24 separate ones
  • Multi-Source Search: PubMed, Google Scholar, ArXiv, and JSTOR
  • User Preferences: Customizable search and display settings
  • Content Extraction: Full-text paper access and analysis
  • Citation Management: Multiple citation format support
  • Error Handling: Robust fallback mechanisms

Project Structure

This tool is organized into several key components:

Core Components

src/
├── index.ts                           # Main server entry point (consolidated)
├── adapters/                          # Data source connectors
│   ├── pubmed.ts                      # PubMed API integration
│   ├── google-scholar.ts              # Google Scholar web scraping
│   ├── google-scholar-firecrawl.ts    # Firecrawl integration
│   ├── arxiv.ts                       # ArXiv integration
│   ├── unified-search.ts              # Basic multi-source search
│   ├── enhanced-unified-search.ts     # Advanced multi-source search
│   └── preference-aware-unified-search.ts # User preference integration
├── preferences/                       # User preference management
│   └── user-preferences.ts            # Preference storage and retrieval
└── models/                            # Data structures and interfaces
    ├── paper.ts                       # Paper data models
    ├── search.ts                      # Search parameter models
    └── preferences.ts                 # Preference models

Documentation

docs/
├── README.md                          # Documentation index and overview
├── CONSOLIDATION_GUIDE.md             # Complete consolidation guide
├── TOOL_CONSOLIDATION.md              # Quick tool mapping reference
├── PROJECT_STRUCTURE.md               # Clean project organization
├── API_REFERENCE.md                   # Complete API documentation
├── ARCHITECTURE.md                    # Technical system design
├── DATA_MODELS.md                     # Data structure definitions
├── DEVELOPMENT.md                     # Developer setup guide
└── TROUBLESHOOTING.md                 # Problem-solving guide

Testing

tests/
├── test-preferences.js                # Preference system tests
├── test-all-tools-simple.sh           # Bash test runner (recommended)
├── test_all_tools.py                  # Python test runner
└── test-all-tools.js                  # JavaScript test runner

Configuration

├── package.json                       # Project dependencies and scripts
├── tsconfig.json                      # TypeScript configuration
├── .env.example                       # Environment variables template
└── README.md                          # This file

Available Tools

The server provides 5 consolidated MCP tools that replace the previous 24 individual tools:

1. research_search

Comprehensive research paper search across multiple sources with advanced filtering and unified results.

Combines: All individual search tools from PubMed, Google Scholar, ArXiv, and JSTOR Parameters: Query, sources, filters, display options, sorting

2. paper_analysis

Get comprehensive paper information, full text, and analysis including quotes, statistics, and findings.

Combines: Paper retrieval, content extraction, and analysis tools Parameters: Identifier, analysis type, quote limits, section lengths

3. citation_manager

Generate citations in multiple formats and get citation information including counts and related papers.

Combines: Citation tools, citation counting, and related paper discovery Parameters: Identifier, action, format, related paper limits

4. research_preferences

Manage research preferences including source priorities, search settings, display options, and caching.

Combines: All preference management tools Parameters: Action, category, various preference values

5. web_research

Perform web-based research using Firecrawl for reliable content extraction and analysis.

Combines: Firecrawl integration and web research tools Parameters: Action, targets, options, crawling limits

Quick Start

Option 1: Use Through AI Assistants (Easiest - No Setup Required)

If you're not comfortable with technical setup, you can use this tool through AI assistants like:

  • Claude (Anthropic)
  • ChatGPT (OpenAI)
  • Cursor (Code editor with AI)

These assistants can use this tool to help you find research papers without any setup on your part.

Option 2: Set Up MCP on Your Computer (For Advanced Users)

This option lets you use the tool directly with AI assistants on your computer. It's like giving your AI assistant a special tool to find research papers.

Setting Up MCP (Model Context Protocol)

MCP is like a "language" that lets AI assistants talk to tools on your computer. Think of it like installing a special app that your AI assistant can use.

What You Need

  • A computer (Windows, Mac, or Linux)
  • An AI assistant that supports MCP (like Claude Desktop, Cursor, or others)
  • Basic computer skills (downloading files, running programs)

Step-by-Step Setup

  1. Download the tool

    git clone https://github.com/aringadre76/mcp-for-research.git
    cd mcp-for-research
    
  2. Install dependencies

    npm install
    
  3. Build the tool

    npm run build
    
  4. Configure your AI assistant

    • Find "MCP Servers" or "Tools" in your AI assistant's settings
    • Add a new MCP server
    • Set the command to: node dist/index.js
    • Set the working directory to your project folder
  5. Test the setup

    npm run test:all-tools-bash
    

Usage Examples

Search for Papers

{
  "method": "tools/call",
  "params": {
    "name": "research_search",
    "arguments": {
      "query": "machine learning",
      "sources": ["pubmed", "arxiv"],
      "maxResults": 15,
      "startDate": "2020/01/01"
    }
  }
}

Analyze a Paper

{
  "method": "tools/call",
  "params": {
    "name": "paper_analysis",
    "arguments": {
      "identifier": "12345678",
      "analysisType": "complete",
      "maxQuotes": 20
    }
  }
}

Get Citations

{
  "method": "tools/call",
  "params": {
    "name": "citation_manager",
    "arguments": {
      "identifier": "12345678",
      "action": "all",
      "format": "apa"
    }
  }
}

Benefits of the Consolidated Approach

80% reduction in tool count (24 → 5)
Easier to remember and use
More powerful - multiple operations in single calls
Better performance - fewer tool registrations
Easier maintenance - less code duplication
Consistent interface - similar parameter patterns

Migration from Previous Version

The consolidated tools are backward compatible - you can still access the same functionality, just through fewer, more powerful tools. Each consolidated tool accepts parameters that let you specify exactly what you want to do.

Old Tool New Tool Notes
search_papers research_search Use sources: ["pubmed"]
get_paper_by_id paper_analysis Use analysisType: "basic"
get_full_text paper_analysis Use analysisType: "full-text"
get_citation citation_manager Use action: "generate"
set_source_preference research_preferences Use action: "set", category: "source"

Troubleshooting

Common Issues

Q: The tool doesn't start A: Make sure you've run npm install and npm run build first.

Q: My AI assistant can't find the tools A: Check that the MCP server path is correct in your AI assistant's settings.

Q: Searches return no results A: Try different search terms or check if your sources are enabled in preferences.

Q: How do I get papers in a specific format? A: Use the citation tools to get the paper in the format you need (APA, MLA, etc.).

Development

Running Tests

npm run test:all-tools-bash

Building

npm run build

Development Mode

npm run dev

Contributing

We welcome contributions! Please see our contributing guidelines and feel free to submit issues or pull requests.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Documentation

For comprehensive documentation, guides, and technical details, see the docs/ directory:

Support

If you need help:

  1. Check the troubleshooting section above
  2. Look at the documentation in the docs/ folder
  3. Open an issue on GitHub
  4. Check the CHANGELOG.md for recent updates

Version History

  • v2.0.0: Consolidated 24 tools into 5 powerful tools
  • v1.4.x: Previous version with 24 individual tools
  • v1.0.x: Initial release

Note: This tool is designed to be easy to use while providing powerful research capabilities. The consolidated approach makes it simpler to use while maintaining all the functionality of the previous version.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选