SCMCP

SCMCP

An MCP server that enables scRNA-Seq analysis through natural language, providing tools for data preprocessing, clustering, and biological visualization. It supports both predefined function execution and a flexible code mode powered by a Jupyter backend for automated single-cell transcriptomics workflows.

Category
访问服务器

README

SCMCP

An MCP server for scRNA-Seq analysis with natural language!

🪩 What can it do?

  • IO module: Read and write scRNA-Seq data with natural language
  • Preprocessing module: Filtering, quality control, normalization, scaling, highly-variable genes, PCA, Neighbors,...
  • Tool module: Clustering, differential expression, etc.
  • Plotting module: Violin plots, heatmaps, dotplots
  • Cell-cell communication analysis
  • Pseudotime analysis
  • Enrichment analysis

❓ Who is this for?

  • Anyone who wants to do scRNA-Seq analysis using natural language!
  • Agent developers who want to call scanpy's functions for their applications

🌐 Where to use it?

You can use scmcp in most AI clients, plugins, or agent frameworks that support the MCP:

  • AI clients, like Cherry Studio
  • Plugins, like Cline
  • Agent frameworks, like Agno

📚 Documentation

scmcphub's complete documentation is available at https://docs.scmcphub.org

🎬 Demo

A demo showing scRNA-Seq cell cluster analysis in an AI client Cherry Studio using natural language based on scmcp:

https://github.com/user-attachments/assets/93a8fcd8-aa38-4875-a147-a5eeff22a559

🏎️ Quickstart

Install

Install from PyPI:

pip install scmcp

You can test it by running:

scmcp run

🚀 Running Modes

SCMCP provides two distinct run modes to accommodate different user needs and preferences:

1. Tool Mode

In tool mode, SCMCP provides a curated set of predefined functions that the LLM can select and execute.

Advantages:

  • Stable: Predefined functions ensure consistent and reliable execution
  • Predictable: Known behavior and expected outputs
  • Safe: Controlled environment with validated operations

Disadvantages:

  • Limited flexibility: Restricted to available predefined functions; you need to define new tools when you need customization functions

Usage

Running in terminal:

scmcp run --run-mode tool

Configure MCP client:

{
  "mcpServers": {
    "scmcp": {
      "command": "/home/test/bin/scmcp",
      "args": ["run", "--run-mode", "tool"]
    }
  }
}

Examples:

  • https://youtu.be/VM7G-VMNhOs
  • https://youtu.be/D669c0EyNzE
  • https://youtu.be/b45_6fJXEIQ

2. Code Mode

In code mode, SCMCP provides a Jupyter backend that allows the LLM to generate and execute custom code. Additionally, it can generate complete Jupyter notebooks containing executable code, analysis results, and visualizations.

This mode is based on the project: https://github.com/huang-sh/abcoder

Advantages:

  • Highly flexible: Can create custom workflows and combine operations freely
  • Extensible: Supports any Python code and external libraries
  • Interactive: Real-time code execution and debugging capabilities

Disadvantages:

  • Less stable: Code generation may vary each time

Usage

Running in terminal:

scmcp run --run-mode code

Configure MCP client:

{
  "mcpServers": {
    "scmcp": {
      "command": "/home/test/bin/scmcp",
      "args": ["run", "--run-mode", "code"]
    }
  }
}

Example: https://youtu.be/3jtXIeapslI

📝 Mode Comparison

Feature Tool Mode Code Mode
Execution Method Predefined functions Custom code generation
Stability High (consistent) Lower (variable)
Flexibility Limited to available tools Highly flexible
Safety Controlled environment Full Python execution
Use Case Standard workflows Custom analysis
Learning Curve Easy to use Requires Python knowledge

🌐 Remote Deployment

For both modes, you can also run SCMCP remotely:

Remote Setup

Start the server:

# Tool mode
scmcp run --transport shttp --port 8000 --run-mode tool

# Code mode
scmcp run --transport shttp --port 8000 --run-mode code

Configure your MCP client:

{
  "mcpServers": {
    "scmcp": {
      "url": "http://localhost:8000/mcp"
    }
  }
}

🤝 Contributing

If you have any questions, welcome to submit an issue, or contact me (hsh-me@outlook.com). Contributions to the code are also welcome!

Citing

If you use scmcp in your research, please consider citing the following works:

Wolf, F., Angerer, P. & Theis, F. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15 (2018). https://doi.org/10.1186/s13059-017-1382-0

Dimitrov D., Schäfer P.S.L, Farr E., Rodriguez Mier P., Lobentanzer S., Badia-i-Mompel P., Dugourd A., Tanevski J., Ramirez Flores R.O. and Saez-Rodriguez J. LIANA+ provides an all-in-one framework for cell–cell communication inference. Nat Cell Biol (2024). https://doi.org/10.1038/s41556-024-01469-w

Badia-i-Mompel P., Vélez Santiago J., Braunger J., Geiss C., Dimitrov D., Müller-Dott S., Taus P., Dugourd A., Holland C.H., Ramirez Flores R.O. and Saez-Rodriguez J. 2022. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinformatics Advances. https://doi.org/10.1093/bioadv/vbac016

Weiler, P., Lange, M., Klein, M. et al. CellRank 2: unified fate mapping in multiview single-cell data. Nat Methods 21, 1196–1205 (2024). https://doi.org/10.1038/s41592-024-02303-9

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选