SDOF Knowledge Base
A Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.
README
SDOF MCP - Structured Decision Optimization Framework
Next-generation knowledge management system with 5-phase optimization workflow
The Structured Decision Optimization Framework (SDOF) Knowledge Base is a Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.
🚀 Quick Start
Prerequisites
- Node.js 18+
- OpenAI API Key (for embeddings)
- MCP-compatible client (Claude Desktop, etc.)
Installation
# Clone the repository
git clone https://github.com/your-username/sdof-mcp.git
cd sdof-mcp
# Install dependencies
npm install
npm run build
# Configure environment
cp .env.example .env
# Edit .env with your OpenAI API key
# Start the server
npm start
📖 Documentation
- Installation Guide - Complete setup instructions
- Migration Guide - Migration from ConPort
- API Documentation - MCP tool reference
- Setup Guide - Detailed configuration
✨ Features
🎯 5-Phase Optimization Workflow
- Phase 1: Exploration - Solution discovery and brainstorming
- Phase 2: Analysis - Detailed evaluation and optimization
- Phase 3: Implementation - Code development and testing
- Phase 4: Evaluation - Performance and quality assessment
- Phase 5: Integration - Learning consolidation and documentation
🧠 Advanced Knowledge Management
- Vector Embeddings: Semantic search with OpenAI embeddings
- Persistent Storage: MongoDB/SQLite with vector indexing
- Prompt Caching: Optimized for LLM efficiency
- Schema Validation: Structured content types
- Multi-Interface: Both MCP tools and HTTP API
🔧 Content Types
text- General documentation and notescode- Code implementations and examplesdecision- Decision records and rationaleanalysis- Analysis results and findingssolution- Solution descriptions and designsevaluation- Evaluation reports and metricsintegration- Integration documentation and guides
🛠️ MCP Tools
Primary Tool: store_sdof_plan
Store structured knowledge with metadata:
{
plan_content: string; // Markdown content
metadata: {
planTitle: string; // Descriptive title
planType: ContentType; // Content type (text, code, decision, etc.)
tags?: string[]; // Categorization tags
phase?: string; // SDOF phase (1-5)
cache_hint?: boolean; // Mark for prompt caching
}
}
Example Usage
// Store a decision record
{
"server_name": "sdof_knowledge_base",
"tool_name": "store_sdof_plan",
"arguments": {
"plan_content": "# Database Selection\n\nChose MongoDB for vector storage due to...",
"metadata": {
"planTitle": "Database Architecture Decision",
"planType": "decision",
"tags": ["database", "architecture"],
"phase": "2",
"cache_hint": true
}
}
}
🏗️ Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ AI Clients │───▶│ SDOF Knowledge │───▶│ Database │
│ (Claude, etc.) │ │ Base MCP │ │ (MongoDB/ │
└─────────────────┘ │ Server │ │ SQLite) │
└──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ HTTP API │
│ (Port 3000) │
└──────────────────┘
🔧 Configuration
MCP Client Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"sdof_knowledge_base": {
"type": "stdio",
"command": "node",
"args": ["path/to/sdof-mcp/build/index.js"],
"env": {
"OPENAI_API_KEY": "your-openai-api-key"
},
"alwaysAllow": ["store_sdof_plan"]
}
}
}
Environment Variables
# Required
OPENAI_API_KEY=sk-proj-your-openai-api-key
# Optional
EMBEDDING_MODEL=text-embedding-3-small
HTTP_PORT=3000
MONGODB_URI=mongodb://localhost:27017/sdof
🧪 Testing
# Run tests
npm test
# Run system validation
node build/test-unified-system.js
# Performance benchmarks
npm run test:performance
📊 Performance
Target metrics:
- Query Response: <500ms average
- Embedding Generation: <2s per request
- Vector Search: <100ms for similarity calculations
- Database Operations: <50ms for CRUD operations
🤝 Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make changes to TypeScript files in
src/ - Run tests:
npm test - Build:
npm run build - Commit changes:
git commit -m 'Add amazing feature' - Push to branch:
git push origin feature/amazing-feature - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
- Documentation: Check the docs/ directory
- Issues: GitHub Issues
- Installation Help: See SDOF_INSTALLATION_GUIDE.md
🎉 Success Indicators
You know the system is working correctly when:
- ✅ No authentication errors in logs
- ✅
store_sdof_plantool responds successfully - ✅ Knowledge entries are stored and retrievable
- ✅ Query performance meets targets (<500ms)
- ✅ Test suite passes completely
Built with ❤️ for the AI community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。