SDOF Knowledge Base

SDOF Knowledge Base

A Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.

Category
访问服务器

README

SDOF MCP - Structured Decision Optimization Framework

Node.js License: MIT MCP

Next-generation knowledge management system with 5-phase optimization workflow

The Structured Decision Optimization Framework (SDOF) Knowledge Base is a Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow.

🚀 Quick Start

Prerequisites

  • Node.js 18+
  • OpenAI API Key (for embeddings)
  • MCP-compatible client (Claude Desktop, etc.)

Installation

# Clone the repository
git clone https://github.com/your-username/sdof-mcp.git
cd sdof-mcp

# Install dependencies
npm install
npm run build

# Configure environment
cp .env.example .env
# Edit .env with your OpenAI API key

# Start the server
npm start

📖 Documentation

✨ Features

🎯 5-Phase Optimization Workflow

  • Phase 1: Exploration - Solution discovery and brainstorming
  • Phase 2: Analysis - Detailed evaluation and optimization
  • Phase 3: Implementation - Code development and testing
  • Phase 4: Evaluation - Performance and quality assessment
  • Phase 5: Integration - Learning consolidation and documentation

🧠 Advanced Knowledge Management

  • Vector Embeddings: Semantic search with OpenAI embeddings
  • Persistent Storage: MongoDB/SQLite with vector indexing
  • Prompt Caching: Optimized for LLM efficiency
  • Schema Validation: Structured content types
  • Multi-Interface: Both MCP tools and HTTP API

🔧 Content Types

  • text - General documentation and notes
  • code - Code implementations and examples
  • decision - Decision records and rationale
  • analysis - Analysis results and findings
  • solution - Solution descriptions and designs
  • evaluation - Evaluation reports and metrics
  • integration - Integration documentation and guides

🛠️ MCP Tools

Primary Tool: store_sdof_plan

Store structured knowledge with metadata:

{
  plan_content: string;        // Markdown content
  metadata: {
    planTitle: string;         // Descriptive title
    planType: ContentType;     // Content type (text, code, decision, etc.)
    tags?: string[];           // Categorization tags
    phase?: string;            // SDOF phase (1-5)
    cache_hint?: boolean;      // Mark for prompt caching
  }
}

Example Usage

// Store a decision record
{
  "server_name": "sdof_knowledge_base",
  "tool_name": "store_sdof_plan",
  "arguments": {
    "plan_content": "# Database Selection\n\nChose MongoDB for vector storage due to...",
    "metadata": {
      "planTitle": "Database Architecture Decision",
      "planType": "decision",
      "tags": ["database", "architecture"],
      "phase": "2",
      "cache_hint": true
    }
  }
}

🏗️ Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   AI Clients    │───▶│  SDOF Knowledge  │───▶│   Database      │
│ (Claude, etc.)  │    │     Base MCP     │    │  (MongoDB/      │
└─────────────────┘    │    Server        │    │   SQLite)       │
                       └──────────────────┘    └─────────────────┘
                                │
                                ▼
                       ┌──────────────────┐
                       │   HTTP API       │
                       │  (Port 3000)     │
                       └──────────────────┘

🔧 Configuration

MCP Client Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "sdof_knowledge_base": {
      "type": "stdio",
      "command": "node",
      "args": ["path/to/sdof-mcp/build/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key"
      },
      "alwaysAllow": ["store_sdof_plan"]
    }
  }
}

Environment Variables

# Required
OPENAI_API_KEY=sk-proj-your-openai-api-key

# Optional
EMBEDDING_MODEL=text-embedding-3-small
HTTP_PORT=3000
MONGODB_URI=mongodb://localhost:27017/sdof

🧪 Testing

# Run tests
npm test

# Run system validation
node build/test-unified-system.js

# Performance benchmarks
npm run test:performance

📊 Performance

Target metrics:

  • Query Response: <500ms average
  • Embedding Generation: <2s per request
  • Vector Search: <100ms for similarity calculations
  • Database Operations: <50ms for CRUD operations

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make changes to TypeScript files in src/
  4. Run tests: npm test
  5. Build: npm run build
  6. Commit changes: git commit -m 'Add amazing feature'
  7. Push to branch: git push origin feature/amazing-feature
  8. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

🎉 Success Indicators

You know the system is working correctly when:

  • ✅ No authentication errors in logs
  • store_sdof_plan tool responds successfully
  • ✅ Knowledge entries are stored and retrievable
  • ✅ Query performance meets targets (<500ms)
  • ✅ Test suite passes completely

Built with ❤️ for the AI community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选