search-console-mcp
Model Context Protocol (MCP) server that provides AI agents with access to Google Search Console data.
README
Google Search Console MCP Server
A Model Context Protocol (MCP) server that provides AI agents with access to Google Search Console data.
Quick Start
For users with an MCP-compatible client (like Claude Desktop):
npx search-console-mcp
Table of Contents
- Features
- Installation
- Google Cloud Setup
- MCP Client Configuration
- Local Development
- Tools Reference
- Resources
- Prompts
Features
- Sites Management: List, add, and delete sites
- Sitemaps: List, submit, get, and delete sitemaps
- Search Analytics: Query performance data with advanced filtering and pagination
- Period Comparison: Compare metrics between two date ranges
- Top Queries/Pages: Get top performing queries and pages
- URL Inspection: Check indexing status of specific URLs
- AI Documentation: Built-in docs for AI agents to understand GSC concepts
Installation
Option 1: Use with npx (Recommended)
No installation needed. Configure your MCP client to run:
npx search-console-mcp
Option 2: Global Install
npm install -g search-console-mcp
search-console-mcp
Option 3: Clone for Development
git clone https://github.com/saurabhsharma2u/search-console-mcp.git
cd search-console-mcp
npm install
npm run build
node dist/index.js
Google Cloud Setup
Step 1: Create a Google Cloud Project
- Go to Google Cloud Console
- Create a new project or select an existing one
- Enable the Google Search Console API:
- Go to APIs & Services > Library
- Search for "Google Search Console API"
- Click Enable
Step 2: Create a Service Account
- Go to APIs & Services > Credentials
- Click Create Credentials > Service Account
- Fill in the details and click Create
- Skip the optional steps and click Done
- Click on the service account email to open it
- Go to the Keys tab > Add Key > Create new key
- Select JSON and download the key file
Step 3: Grant Access in Search Console
- Go to Google Search Console
- Select your property
- Go to Settings > Users and permissions
- Click Add user
- Enter the service account email (e.g.,
my-service@project.iam.gserviceaccount.com) - Set permission to Full (for write operations) or Restricted (read-only)
Step 4: Configure Credentials
Option A: File-based (Local Development)
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/your/service-account-key.json"
Option B: Environment Variables (Serverless/Cloudflare)
export GOOGLE_CLIENT_EMAIL="your-service-account@project.iam.gserviceaccount.com"
export GOOGLE_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----"
MCP Client Configuration
Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"google-search-console": {
"command": "npx",
"args": ["search-console-mcp"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json"
}
}
}
}
Generic MCP Client
{
"name": "google-search-console",
"command": "npx",
"args": ["search-console-mcp"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json"
}
}
Local Development
Setup
# Clone the repository
git clone https://github.com/saurabhsharma2u/search-console-mcp.git
cd search-console-mcp
# Install dependencies
npm install
# Create .env file
cp .env.example .env
# Edit .env with your credentials
# Build
npm run build
# Run tests
npm test
# Run the server
node dist/index.js
Project Structure
src/
├── index.ts # MCP server entry point
├── google-client.ts # Google API authentication
├── errors.ts # Error handling utilities
├── docs/ # Embedded documentation for AI
│ ├── dimensions.ts
│ ├── filters.ts
│ ├── search-types.ts
│ └── patterns.ts
└── tools/ # Tool implementations
├── sites.ts
├── sitemaps.ts
├── analytics.ts
└── inspection.ts
Tools Reference
Sites
| Tool | Description | Arguments |
|---|---|---|
sites_list |
List all sites | none |
sites_add |
Add a site | siteUrl |
sites_delete |
Delete a site | siteUrl |
sites_get |
Get site details | siteUrl |
Sitemaps
| Tool | Description | Arguments |
|---|---|---|
sitemaps_list |
List sitemaps | siteUrl |
sitemaps_get |
Get sitemap details | siteUrl, feedpath |
sitemaps_submit |
Submit sitemap | siteUrl, feedpath |
sitemaps_delete |
Delete sitemap | siteUrl, feedpath |
Analytics
| Tool | Description | Arguments |
|---|---|---|
analytics_query |
Query search analytics with filters | siteUrl, startDate, endDate, dimensions?, type?, limit?, startRow?, filters? |
analytics_performance_summary |
Get aggregate metrics for N days | siteUrl, days? |
analytics_compare_periods |
Compare two date ranges | siteUrl, period1Start, period1End, period2Start, period2End |
analytics_top_queries |
Get top queries | siteUrl, days?, limit?, sortBy? |
analytics_top_pages |
Get top pages | siteUrl, days?, limit?, sortBy? |
Inspection
| Tool | Description | Arguments |
|---|---|---|
inspection_inspect |
Inspect URL index status | siteUrl, inspectionUrl, languageCode? |
PageSpeed Insights
| Tool | Description | Arguments |
|---|---|---|
pagespeed_analyze |
PageSpeed Insights scores (performance, accessibility, SEO) | url, strategy? (mobile/desktop) |
pagespeed_core_web_vitals |
Core Web Vitals for mobile & desktop (LCP, FID, CLS, etc.) | url |
SEO Insights
| Tool | Description | Arguments |
|---|---|---|
seo_recommendations |
Generate actionable SEO recommendations | siteUrl, days? |
seo_low_hanging_fruit |
Find keywords at positions 5-20 with high impressions | siteUrl, days?, minImpressions?, limit? |
seo_cannibalization |
Detect pages competing for the same keywords | siteUrl, days?, minImpressions?, limit? |
seo_quick_wins |
Find pages close to page 1 (positions 11-20) | siteUrl, days?, minImpressions?, limit? |
Resources
AI agents can read these built-in documentation and data resources:
| URI | Description |
|---|---|
sites://list |
List of all sites (JSON) |
sitemaps://list/{siteUrl} |
Sitemaps for a specific site (JSON) |
analytics://summary/{siteUrl} |
Performance summary for a site (JSON) |
docs://dimensions |
Available dimensions reference |
docs://filters |
Filter operators and examples |
docs://search-types |
Search types (web, image, video, etc.) |
docs://patterns |
Common usage patterns and recipes |
Prompts
Pre-configured analysis workflows for AI agents:
| Prompt | Description | Arguments |
|---|---|---|
analyze-site-performance |
Analyze site's 28-day performance | siteUrl |
compare-performance |
Compare this week vs last week | siteUrl |
find-declining-pages |
Find pages losing traffic | siteUrl |
keyword-opportunities |
Find low-CTR high-impression queries | siteUrl |
new-content-impact |
Analyze new content performance | siteUrl, pageUrl |
mobile-vs-desktop |
Compare device performance | siteUrl |
Contributing
See CONTRIBUTING.md for contribution guidelines.
Roadmap
See ROADMAP.md for planned features.
License
MIT - see LICENSE
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。