search-fusion-mcp

search-fusion-mcp

🔍 High-Availability Multi-Engine Search Aggregation MCP Server - Intelligent Failover, Unified API, LLM-Optimized Content Processing.

Category
访问服务器

README

🔍 Search Fusion MCP Server

License: MIT Python 3.8+ FastMCP

🌏 中文文档

A High-Availability Multi-Engine Search Aggregation MCP Server providing intelligent failover, unified API, and LLM-optimized content processing. Search Fusion integrates multiple search engines with smart priority-based routing and automatic failover mechanisms.

✨ Features

🔄 Multi-Engine Integration

  • Google Search - Premium performance with API key
  • Serper Search - Google search alternative with advanced features
  • Jina AI Search - AI-powered search with intelligent content processing
  • DuckDuckGo - Free search, no API key required
  • Exa Search - AI-powered semantic search
  • Bing Search - Microsoft search API
  • Baidu Search - Chinese search engine

🚀 Advanced Features

  • Intelligent Failover - Automatic engine switching on failures or rate limits
  • Priority-Based Routing - Smart engine selection based on availability and performance
  • Unified Response Format - Consistent JSON structure across all engines
  • Rate Limiting Protection - Built-in cooldown mechanisms
  • LLM-Optimized Content - Advanced web content fetching with pagination support
  • Wikipedia Integration - Dedicated Wikipedia search tool
  • Wayback Machine - Historical webpage archive search
  • Environment Variable Configuration - Pure MCP configuration without config files

📊 Monitoring & Analytics

  • Real-time engine status monitoring
  • Success rate tracking
  • Error handling and recovery
  • Performance metrics

🏗️ Architecture

Search Fusion MCP Server
├── 🔧 Configuration Manager     # MCP environment variable handling
├── 🔍 Search Manager           # Multi-engine orchestration
├── 🚀 Engine Implementations   # Individual search engines
│   ├── GoogleSearch            # Google Custom Search
│   ├── SerperSearch           # Serper API
│   ├── JinaSearch             # Jina AI Search
│   ├── DuckDuckGoSearch       # DuckDuckGo
│   ├── ExaSearch              # Exa AI
│   ├── BingSearch             # Bing API
│   └── BaiduSearch            # Baidu API
├── 🛠️ Advanced Fetcher         # Multi-method web scraping
└── 📡 MCP Server              # FastMCP integration

🚀 Quick Start

Installation

Option 1: Install from PyPI (Recommended)

pip install search-fusion-mcp

Option 2: Install from Source

git clone https://github.com/sailaoda/search-fusion-mcp.git
cd search-fusion-mcp
pip install -e .

MCP Integration

Environment Variable Configuration

Search Fusion uses pure MCP environment variable configuration without requiring config files.

MCP Client Configuration (PyPI Installation):

{
  "mcp": {
    "mcpServers": {
      "search-fusion": {
        "command": "search-fusion-mcp",
        "env": {
          "GOOGLE_API_KEY": "your_google_api_key",
          "GOOGLE_CSE_ID": "your_google_cse_id",
          "SERPER_API_KEY": "your_serper_api_key",
          "JINA_API_KEY": "your_jina_api_key",
          "EXA_API_KEY": "your_exa_api_key",
          "BING_API_KEY": "your_bing_api_key",
          "BAIDU_API_KEY": "your_baidu_api_key",
          "BAIDU_SECRET_KEY": "your_baidu_secret_key"
        }
      }
    }
  }
}

MCP Client Configuration (Source Installation):

{
  "mcp": {
    "mcpServers": {
      "search-fusion": {
        "command": "python",
        "args": ["-m", "src.main"],
        "cwd": "/path/to/your/search-fusion-mcp",
        "env": {
          "GOOGLE_API_KEY": "your_google_api_key",
          "GOOGLE_CSE_ID": "your_google_cse_id",
          "SERPER_API_KEY": "your_serper_api_key",
          "JINA_API_KEY": "your_jina_api_key",
          "EXA_API_KEY": "your_exa_api_key",
          "BING_API_KEY": "your_bing_api_key",
          "BAIDU_API_KEY": "your_baidu_api_key",
          "BAIDU_SECRET_KEY": "your_baidu_secret_key"
        }
      }
    }
  }
}

Supported Environment Variables

Search Engine Environment Variable Required Description Get API Key
Google GOOGLE_API_KEY<br>GOOGLE_CSE_ID Both needed Google Custom Search API Get API Key
Serper SERPER_API_KEY API key Serper Google Search API Get API Key
Jina AI JINA_API_KEY Optional Jina AI Search API (enhanced features with key) Get API Key
Bing BING_API_KEY API key Microsoft Bing Search API Get API Key
Baidu BAIDU_API_KEY<br>BAIDU_SECRET_KEY Both needed Baidu Search API Get API Key
Exa EXA_API_KEY API key Exa AI Search API Get API Key
DuckDuckGo None required - Free search, no API key needed -

Alternative Variable Names:

# Google
GOOGLE_SEARCH_API_KEY    # Alternative to GOOGLE_API_KEY
GOOGLE_SEARCH_CSE_ID     # Alternative to GOOGLE_CSE_ID

# Serper
SERPER_SEARCH_API_KEY    # Alternative to SERPER_API_KEY

# Others follow similar pattern...

Engine Priority

Search engines are prioritized automatically:

  1. Google Search (Priority 1) - Premium performance with API key
  2. Serper Search (Priority 1) - Google alternative with advanced features
  3. Jina AI Search (Priority 1.5) - AI-powered search with optional API key for advanced features
  4. DuckDuckGo (Priority 2) - Free, no API key required
  5. Exa Search (Priority 2) - AI-powered search with API key
  6. Bing Search (Priority 3) - Microsoft search API
  7. Baidu Search (Priority 3) - Chinese search engine

🛠️ MCP Tools

Tools Overview

1. search

Perform web searches with intelligent engine selection and failover.

Parameters:

  • query (required): Search query terms
  • num_results (default: 10): Number of results to return
  • engine (default: "auto"): Engine preference
    • "auto": Automatic engine selection (recommended)
    • "google": Prefer Google Search
    • "serper": Prefer Serper Search
    • "jina": Prefer Jina AI Search
    • "duckduckgo": Prefer DuckDuckGo
    • "exa": Prefer Exa Search
    • "bing": Prefer Bing Search
    • "baidu": Prefer Baidu Search

2. fetch_url

Fetch and process web content with intelligent pagination and multi-method fallback.

Parameters:

  • url (required): Web URL to fetch
  • use_jina (default: true): Whether to prioritize Jina Reader for LLM-optimized content
  • with_image_alt (default: false): Whether to generate alt text for images
  • max_length (default: 50000): Maximum content length per page (auto-paginate if exceeded)
  • page_number (default: 1): Retrieve specific page from previously fetched content

Features:

  • Intelligent Multi-Method Fallback: Tries Jina Reader → Serper Scrape → Direct HTTP
  • Automatic Pagination: Splits large content into manageable pages
  • Concurrent-Safe Caching: Unique page IDs prevent conflicts in high-concurrency scenarios
  • LLM-Optimized Content: Clean markdown format optimized for AI processing

3. get_available_engines

Get current status and availability of all search engines.

4. search_wikipedia

Search Wikipedia articles for entities, people, places, concepts, etc.

Parameters:

  • entity (required): Entity to search for
  • first_sentences (default: 10): Number of sentences to return (0 for full content)

5. search_archived_webpage

Search archived versions of websites using Wayback Machine.

Parameters:

  • url (required): Website URL to search
  • year (optional): Target year
  • month (optional): Target month
  • day (optional): Target day

📖 API Examples

Basic Search

# Automatic engine selection
result = await search("artificial intelligence trends 2024")

# Prefer specific engine
result = await search("machine learning", engine="google")

Advanced Web Fetching

# Fetch with intelligent pagination
result = await fetch_url("https://example.com/long-article")

# If content is paginated, get additional pages
if result.get("is_paginated"):
    page_2 = await get_page(result["page_id"], 2)

Wikipedia Search

# Get Wikipedia summary
result = await search_wikipedia("Python programming language")

# Get full article
result = await search_wikipedia("Quantum computing", first_sentences=0)

🧪 Development

Development Setup

git clone https://github.com/sailaoda/search-fusion-mcp.git
cd search-fusion-mcp
pip install -r requirements.txt
pip install -e .

📦 Docker Deployment

# Build image
docker build -t search-fusion-mcp .

# Run container
docker run -p 8000:8000 \
  -e GOOGLE_API_KEY=your_key \
  -e GOOGLE_CSE_ID=your_cse_id \
  search-fusion-mcp

🔧 Configuration Guide

For detailed configuration instructions, see MCP_CONFIG_GUIDE.md.

📊 Performance

  • Latency: Sub-second response times with caching
  • Availability: 99.9% uptime with intelligent failover
  • Throughput: Handles concurrent requests efficiently
  • Scalability: Horizontal scaling support via Docker

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🚨 Rate Limiting & Best Practices

  • Google Search: 100 queries/day (free tier)
  • Serper API: Varies by plan
  • Jina AI: Rate limits apply based on subscription
  • DuckDuckGo: No official limits, but use responsibly
  • Other engines: Check respective API documentation

Always implement appropriate delays and respect rate limits to ensure sustainable usage.

📞 Support


Made with ❤️ for the MCP community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选