Seattle Fire Department MCP Server

Seattle Fire Department MCP Server

Enables real-time monitoring of Seattle Fire Department incident data, allowing users to check for active fires, evacuation orders, and retrieve live emergency response information through natural language queries.

Category
访问服务器

README

MCP SFD - Seattle Fire Department MCP Server

A Model Context Protocol (MCP) server that provides tools for LLMs to fetch and analyze Seattle Fire Department live incident data.

Features

  • Low-level API proxy (sfd.fetch_raw) with normalization and caching
  • Latest incident retrieval (sfd.latest_incident) for quick updates
  • Fire detection (sfd.is_fire_active) with intelligent status analysis
  • Evacuation monitoring (sfd.has_evacuation_orders) with keyword scanning
  • Robust error handling and retry logic
  • Comprehensive data normalization
  • In-memory caching with configurable TTL

Installation

# Install the package
pip install -e .

# Install development dependencies
pip install -e ".[dev]"

Usage

Running the MCP Server

# Run with default settings
python -m mcp_sfd.server

# Or use the CLI command
mcp-sfd

Environment Variables

  • SFD_BASE_URL: Base URL for SFD API (default: https://sfdlive.com/api/data/)
  • DEFAULT_CACHE_TTL: Default cache TTL in seconds (default: 15)

Available Tools

sfd.fetch_raw

Low-level proxy for the SFD API with full parameter control.

{
  "order": "new",
  "length": 100,
  "search": "Any",
  "cacheTtlSeconds": 15
}

sfd.latest_incident

Returns the single most recent incident.

{}

sfd.is_fire_active

Checks if there are any active fire incidents in Seattle.

{
  "lookbackMinutes": 120
}

sfd.has_evacuation_orders

Scans for evacuation-related keywords in recent incidents.

{
  "lookbackMinutes": 180
}

Development

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=mcp_sfd

# Run specific test file
pytest tests/test_normalize.py

Code Quality

# Format code
black mcp_sfd/ tests/

# Lint
ruff check mcp_sfd/ tests/

# Type check
mypy mcp_sfd/

Architecture

The server is built with several key components:

  • HTTP Client (http_client.py): Handles API requests with retry logic and caching
  • Data Normalization (normalize.py): Converts upstream API format to standardized schemas
  • Pydantic Schemas (schemas.py): Type-safe data models for all inputs and outputs
  • Tool Implementations (tools/): Individual MCP tool logic
  • Server (server.py): MCP server registration and error handling

Data Normalization

The server handles complex data transformations:

  • Flattens nested upstream data structures
  • Converts Seattle local time to UTC
  • Normalizes coordinates from various formats
  • Parses unit identifiers and status information
  • Standardizes boolean fields

Error Handling

All tools use standardized MCP error codes:

  • UPSTREAM_HTTP_ERROR: API connectivity issues
  • UPSTREAM_TIMEOUT: Request timeouts
  • SCHEMA_VALIDATION_ERROR: Data parsing failures

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选