Security Context MCP Server
Provides instant access to authoritative security documentation from organizations like OWASP, NIST, and major cloud providers through natural language semantic search. It enables users to retrieve security best practices, frameworks, and vulnerability information directly from a locally cached knowledge base.
README
Security Context MCP Server
An MCP (Model Context Protocol) server that provides instant access to authoritative security documentation from OWASP, NIST, AWS, Google Cloud, SANS, CIS, and other cybersecurity authorities. Think of it as having a security expert at your fingertips.
Features
- Comprehensive Security Knowledge Base: Aggregates documentation from multiple authoritative sources
- Semantic Search: Find relevant security guidance using natural language queries
- Local Caching: Fast, offline-capable access to indexed documentation
- Multiple Security Domains:
- OWASP Top 10, Cheat Sheets
- NIST Cybersecurity Framework, SP 800-53, SP 800-171, Zero Trust
- AWS Security Best Practices, Well-Architected Framework
- Google Cloud Security, BeyondCorp Zero Trust
- SANS/CWE Top 25, CIS Controls
- CIS Benchmarks
Installation
npm install
npm run build
Initial Setup
Before using the MCP server, fetch and index the security documentation:
npm run fetch-docs
This will:
- Download documentation from all configured sources
- Index the content for fast semantic search
- Cache everything locally in
~/.security-mcp/
The fetch process takes 2-5 minutes depending on your internet connection. You only need to run this once, or periodically to update the documentation.
Usage
As an MCP Server
Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"security-context": {
"command": "node",
"args": ["/path/to/security-mcp/dist/index.js"]
}
}
}
Or if installed globally:
{
"mcpServers": {
"security-context": {
"command": "security-mcp"
}
}
}
Available Tools
Once configured, Claude will have access to these tools:
1. search_security_docs
Search across all security documentation using natural language.
Example queries:
- "How do I prevent SQL injection?"
- "What are AWS IAM best practices?"
- "Explain zero trust architecture"
- "NIST incident response guidelines"
Parameters:
query(required): Your security question or topiclimit(optional): Max results (default: 5)source(optional): Filter to specific source (OWASP, NIST, AWS, Google, SANS, CIS)
2. get_security_context
Get comprehensive context on a topic from multiple sources.
Example:
{
"topic": "authentication best practices"
}
Returns aggregated information from all relevant sources.
3. list_security_sources
List all available documentation sources and their categories.
4. get_owasp_top10
Get specific OWASP Top 10 vulnerability information.
Parameters:
category(optional): Specific category like "A01:2021 - Broken Access Control"
Examples
Example 1: Finding Security Guidance
User: "How should I secure my AWS S3 buckets?"
Claude (using search_security_docs):
Found relevant guidance from AWS Security Best Practices:
- Enable S3 Block Public Access by default
- Use IAM roles and policies for access control
- Enable versioning and Object Lock
- Implement bucket encryption [... detailed results with links ...]
Example 2: Understanding Frameworks
User: "What is NIST CSF and how do I use it?"
Claude (using get_security_context):
The NIST Cybersecurity Framework provides structured approach to managing risk... [Shows information from multiple NIST sources about CSF functions, implementation tiers, and profiles]
Example 3: Vulnerability Research
User: "Tell me about the latest OWASP Top 10"
Claude (using get_owasp_top10):
OWASP Top 10 2021 includes:
- A01:2021 - Broken Access Control
- A02:2021 - Cryptographic Failures [... detailed information about each category ...]
Architecture
Components
- MCP Server (
src/index.ts): Main server implementing MCP protocol - Vector Store (
src/vector/simple-store.ts): TF-IDF based search with local caching - Document Sources (
src/sources/): Fetchers for each security authority - Document Fetcher (
src/fetcher.ts): Orchestrates downloading and indexing
Data Flow
- Fetch Phase:
npm run fetch-docsdownloads documentation from sources - Index Phase: Content is processed and indexed with TF-IDF for semantic search
- Cache Phase: Indexed documents saved to
~/.security-mcp/documents.json - Query Phase: MCP tools search the indexed cache and return relevant results
Storage
Documents are stored in: ~/.security-mcp/documents.json
To update documentation, simply run npm run fetch-docs again.
Customization
Adding New Sources
Create a new source in src/sources/:
import { DocumentSource, SecurityDocument } from "../types.js";
export class CustomSource implements DocumentSource {
name = "CustomSource";
async fetchDocuments(): Promise<SecurityDocument[]> {
// Fetch and return documents
return [];
}
}
Then add it to src/fetcher.ts:
import { CustomSource } from "./sources/custom.js";
const sources = [
// ... existing sources
new CustomSource(),
];
Upgrading to Vector Embeddings
The current implementation uses TF-IDF for simplicity and zero external dependencies. For better semantic search, you can upgrade to proper embeddings:
- Replace
SimpleVectorStorewith a real vector DB (ChromaDB, Pinecone, Weaviate) - Add embedding generation using:
- OpenAI embeddings API
- Local models via Sentence Transformers
- Anthropic's Claude API
Updating Documentation
Security documentation changes frequently. Update your cache periodically:
npm run fetch-docs
Consider setting up a cron job to update weekly:
# Run every Sunday at 2am
0 2 * * 0 cd /path/to/security-mcp && npm run fetch-docs
Technical Details
Technologies Used
- MCP SDK: Official Model Context Protocol implementation
- TypeScript: Type-safe development
- Axios & Cheerio: Web scraping and HTML parsing
- Natural: NLP and TF-IDF search
- PDF Parse: PDF document processing (for future enhancements)
Performance
- Initial fetch: 2-5 minutes
- Index size: ~2-5 MB (for all sources)
- Search latency: <100ms (local cache)
- Memory usage: ~50-100 MB
Limitations
- Web scraping may break if source websites change structure
- TF-IDF is simpler than embedding-based search
- No automatic update mechanism (manual refresh required)
- English language only
Troubleshooting
Documents not found
Run the fetcher to download documentation:
npm run fetch-docs
Server not connecting
Check your MCP configuration in Claude Desktop and ensure the path is correct.
Fetch errors
Some sources may be temporarily unavailable. The fetcher continues with other sources even if one fails.
Empty results
Try different query phrasings or use list_security_sources to see what's available.
Contributing
To add more security sources:
- Create a new source file in
src/sources/ - Implement the
DocumentSourceinterface - Add the source to
src/fetcher.ts - Submit a pull request
Potential sources to add:
- Microsoft Security Best Practices
- Azure Security
- PCI DSS guidelines
- HIPAA security rules
- ISO 27001/27002
- SOC 2 requirements
License
MIT
Security & Privacy
- All documentation is cached locally
- No external API calls during query time
- No telemetry or data collection
- Open source and auditable
Support
For issues or questions:
- File an issue on GitHub
- Check the documentation
- Review the source code
Built with ❤️ for the security community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。