
Semantic Prompt MCP
Enables Claude to solve complex problems systematically by breaking them down into 3-4 structured thinking steps. Features document caching and multiple profiles including specialized modes for SuperClaude and SuperGemini frameworks.
README
Semantic Prompt MCP
The Core Thinking Engine for SuperClaude Framework - An MCP server that helps Claude think systematically step-by-step
🎯 What is this?
Semantic Prompt MCP is a tool that helps Claude solve complex problems by breaking them down into 3-4 systematic thinking steps. Just like humans solve problems by "understanding first → choosing a method → executing", this makes Claude follow the same process.
Core Concepts
- 🧠 Step-by-Step Thinking: Break complex problems into 3-4 manageable steps
- 📚 Document Caching: Once read, documents are cached and referenced (performance optimization)
- 🎨 Profile System: Different configuration files for different purposes
⚡ Quick Start
1. Run without Installation
npx semantic-prompt-mcp
2. Add to Claude Code
Add to .mcp.json
in your project root:
{
"mcpServers": {
"semantic-prompt": {
"command": "npx",
"args": ["-y", "semantic-prompt-mcp@latest"],
"env": {
"CHAIN_OF_THOUGHT_CONFIG": "superclaude.json"
}
}
}
}
🎭 Three Modes (Profiles)
1️⃣ default.json - Basic Mode
npx semantic-prompt-mcp # or
npx semantic-prompt-mcp default.json
- Purpose: General problem solving
- Features: Flexible thinking process, simple 3-step structure
- Best for: General tasks without special framework requirements
2️⃣ superclaude.json - SuperClaude Mode ⭐
npx semantic-prompt-mcp superclaude.json
- Purpose: Use with SuperClaude Framework
- Features:
- 90% command selection enforcement (systematic execution)
- Document duplicate read prevention (caching system)
- 21 dedicated commands support
- Quality Gates validation system
- Best for: Required when using SuperClaude Framework
3️⃣ supergemini.json - SuperGemini Mode
npx semantic-prompt-mcp supergemini.json
- Purpose: Use with SuperGemini Framework
- Features:
- 4-step structure (Analysis → TOML Command → Agent Selection → Execution)
- Commands defined in TOML files
- Multi-Agent system support
- Best for: When using SuperGemini Framework
🔄 How It Works
SuperClaude Mode Example (3 Steps)
User: "Analyze security issues in this code"
Step 1️⃣ - Intent Analysis
Claude: "User wants security analysis. Related files are..."
Step 2️⃣ - Command Selection (90% enforced)
Claude: "Selecting 'analyze' command and reading analyze.md document"
System: Provides analyze.md content → Cache saved ✅
Step 3️⃣ - Execution Strategy
Claude: "Following document instructions to execute security analysis..."
🚀 Core Feature: Document Caching System
Documents are never read twice!
First Request:
Claude: "Selecting 'analyze' command"
System: Reads analyze.md → Cache saved ✅
Second Request:
Claude: "Selecting 'analyze' command"
System: "Already read. Refer to system-reminder" ⚡
This significantly reduces token usage and speeds up execution!
🎨 Creating Your Own Custom Profile
Step 1: Create your custom JSON file
Create a new file my-custom.json
in any folder (e.g., your project root):
{
"tool": {
"name": "my_thinking",
"description": "My custom thinking process..."
},
"config": {
"availableCommands": ["analyze", "build", "test"],
"commandPath": "./my-commands/",
"commandPreference": 0.8
}
}
Step 2: Use it in Claude Code
Update your .mcp.json
:
{
"mcpServers": {
"semantic-prompt": {
"command": "npx",
"args": ["-y", "semantic-prompt-mcp@latest"],
"env": {
"CHAIN_OF_THOUGHT_CONFIG": "./my-custom.json" // ← Just change this!
}
}
}
}
That's it! Just change the filename in CHAIN_OF_THOUGHT_CONFIG
:
Built-in profiles (no path needed):
"superclaude.json"
- SuperClaude Framework"supergemini.json"
- SuperGemini Framework"default.json"
- Basic mode
Your custom profiles (need path):
"./my-custom.json"
- File in your project root"./config/my-profile.json"
- File in a subfolder"/absolute/path/to/profile.json"
- Absolute path
Why the difference? Built-in profiles are packaged with npm, your files are in your project!
📁 Project Structure
semantic-prompt-mcp/
├── prompts/
│ ├── default.json # Basic profile
│ ├── superclaude.json # SuperClaude specific
│ └── supergemini.json # SuperGemini specific
├── src/
│ └── index.ts # Main server code
├── LICENSE # MIT License
└── README.md # This document
🤝 For Developers
Local Development Setup
git clone https://github.com/hyunjae-labs/semantic-prompt-mcp.git
cd semantic-prompt-mcp
npm install
npm run build
npm link # For local testing
🔧 Troubleshooting
"Document already read" message appears
This is normal! Documents are cached for performance optimization.
Too many console logs
export DISABLE_THOUGHT_LOGGING=true
Cannot find specific command
Check your command path:
export CHAIN_OF_THOUGHT_COMMAND_PATH=/correct/path/to/commands/
📜 License & Attribution
This project is based on sequential-thinking MCP server.
License
MIT License - Free to use, modify, and distribute
Copyright Notice
- Original Work: Copyright (c) Model Context Protocol Contributors (sequential-thinking)
- This Work: Copyright (c) 2025 Hyunjae Lim (thecurrent.lim@gmail.com)
Major Changes from Original
- Extended 3-step structure to adaptive 3-4 step structure
- Added SuperClaude/SuperGemini Framework specific profiles
- Implemented document caching system
- Added meta-cognitive attention mechanisms
- Implemented multi-profile system
🔗 Related Links
- Model Context Protocol
- Semantic Prompt MCP Repository
- SuperClaude Framework
- SuperGemini Framework
- Original sequential-thinking
🚀 Version History
v1.3.0 (Current)
- Added SuperClaude/SuperGemini profiles
- Implemented document caching system
- Added meta-cognitive attention mechanisms
v1.0.0
- Initial release (based on sequential-thinking)
💡 Need Help?
- Open an issue: GitHub Issues
- Refer to SuperClaude Framework or SuperGemini Framework
- Contact: Hyunjae Lim (thecurrent.lim@gmail.com)
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。