Semantic Prompt MCP

Semantic Prompt MCP

Enables Claude to solve complex problems systematically by breaking them down into 3-4 structured thinking steps. Features document caching and multiple profiles including specialized modes for SuperClaude and SuperGemini frameworks.

Category
访问服务器

README

Semantic Prompt MCP

Version License

The Core Thinking Engine for SuperClaude Framework - An MCP server that helps Claude think systematically step-by-step

🎯 What is this?

Semantic Prompt MCP is a tool that helps Claude solve complex problems by breaking them down into 3-4 systematic thinking steps. Just like humans solve problems by "understanding first → choosing a method → executing", this makes Claude follow the same process.

Core Concepts

  • 🧠 Step-by-Step Thinking: Break complex problems into 3-4 manageable steps
  • 📚 Document Caching: Once read, documents are cached and referenced (performance optimization)
  • 🎨 Profile System: Different configuration files for different purposes

⚡ Quick Start

1. Run without Installation

npx semantic-prompt-mcp

2. Add to Claude Code

Add to .mcp.json in your project root:

{
  "mcpServers": {
    "semantic-prompt": {
      "command": "npx",
      "args": ["-y", "semantic-prompt-mcp@latest"],
      "env": {
        "CHAIN_OF_THOUGHT_CONFIG": "superclaude.json"
      }
    }
  }
}

🎭 Three Modes (Profiles)

1️⃣ default.json - Basic Mode

npx semantic-prompt-mcp  # or
npx semantic-prompt-mcp default.json
  • Purpose: General problem solving
  • Features: Flexible thinking process, simple 3-step structure
  • Best for: General tasks without special framework requirements

2️⃣ superclaude.json - SuperClaude Mode ⭐

npx semantic-prompt-mcp superclaude.json
  • Purpose: Use with SuperClaude Framework
  • Features:
    • 90% command selection enforcement (systematic execution)
    • Document duplicate read prevention (caching system)
    • 21 dedicated commands support
    • Quality Gates validation system
  • Best for: Required when using SuperClaude Framework

3️⃣ supergemini.json - SuperGemini Mode

npx semantic-prompt-mcp supergemini.json
  • Purpose: Use with SuperGemini Framework
  • Features:
    • 4-step structure (Analysis → TOML Command → Agent Selection → Execution)
    • Commands defined in TOML files
    • Multi-Agent system support
  • Best for: When using SuperGemini Framework

🔄 How It Works

SuperClaude Mode Example (3 Steps)

User: "Analyze security issues in this code"

Step 1️⃣ - Intent Analysis
Claude: "User wants security analysis. Related files are..."

Step 2️⃣ - Command Selection (90% enforced)
Claude: "Selecting 'analyze' command and reading analyze.md document"
System: Provides analyze.md content → Cache saved ✅

Step 3️⃣ - Execution Strategy
Claude: "Following document instructions to execute security analysis..."

🚀 Core Feature: Document Caching System

Documents are never read twice!

First Request:
Claude: "Selecting 'analyze' command"
System: Reads analyze.md → Cache saved ✅

Second Request:
Claude: "Selecting 'analyze' command"
System: "Already read. Refer to system-reminder" ⚡

This significantly reduces token usage and speeds up execution!

🎨 Creating Your Own Custom Profile

Step 1: Create your custom JSON file

Create a new file my-custom.json in any folder (e.g., your project root):

{
  "tool": {
    "name": "my_thinking",
    "description": "My custom thinking process..."
  },
  "config": {
    "availableCommands": ["analyze", "build", "test"],
    "commandPath": "./my-commands/",
    "commandPreference": 0.8
  }
}

Step 2: Use it in Claude Code

Update your .mcp.json:

{
  "mcpServers": {
    "semantic-prompt": {
      "command": "npx",
      "args": ["-y", "semantic-prompt-mcp@latest"],
      "env": {
        "CHAIN_OF_THOUGHT_CONFIG": "./my-custom.json"  // ← Just change this!
      }
    }
  }
}

That's it! Just change the filename in CHAIN_OF_THOUGHT_CONFIG:

Built-in profiles (no path needed):

  • "superclaude.json" - SuperClaude Framework
  • "supergemini.json" - SuperGemini Framework
  • "default.json" - Basic mode

Your custom profiles (need path):

  • "./my-custom.json" - File in your project root
  • "./config/my-profile.json" - File in a subfolder
  • "/absolute/path/to/profile.json" - Absolute path

Why the difference? Built-in profiles are packaged with npm, your files are in your project!

📁 Project Structure

semantic-prompt-mcp/
├── prompts/
│   ├── default.json      # Basic profile
│   ├── superclaude.json  # SuperClaude specific
│   └── supergemini.json  # SuperGemini specific
├── src/
│   └── index.ts          # Main server code
├── LICENSE              # MIT License
└── README.md            # This document

🤝 For Developers

Local Development Setup

git clone https://github.com/hyunjae-labs/semantic-prompt-mcp.git
cd semantic-prompt-mcp
npm install
npm run build
npm link  # For local testing

🔧 Troubleshooting

"Document already read" message appears

This is normal! Documents are cached for performance optimization.

Too many console logs

export DISABLE_THOUGHT_LOGGING=true

Cannot find specific command

Check your command path:

export CHAIN_OF_THOUGHT_COMMAND_PATH=/correct/path/to/commands/

📜 License & Attribution

This project is based on sequential-thinking MCP server.

License

MIT License - Free to use, modify, and distribute

Copyright Notice

  • Original Work: Copyright (c) Model Context Protocol Contributors (sequential-thinking)
  • This Work: Copyright (c) 2025 Hyunjae Lim (thecurrent.lim@gmail.com)

Major Changes from Original

  • Extended 3-step structure to adaptive 3-4 step structure
  • Added SuperClaude/SuperGemini Framework specific profiles
  • Implemented document caching system
  • Added meta-cognitive attention mechanisms
  • Implemented multi-profile system

🔗 Related Links

🚀 Version History

v1.3.0 (Current)

  • Added SuperClaude/SuperGemini profiles
  • Implemented document caching system
  • Added meta-cognitive attention mechanisms

v1.0.0

  • Initial release (based on sequential-thinking)

💡 Need Help?

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选