Semiconductor Component RAG Search

Semiconductor Component RAG Search

Enables semantic search and question-answering over semiconductor component data stored in Excel files using ChromaDB vector database and HuggingFace language models through a RAG pipeline.

Category
访问服务器

README

MCP-Based RAG System for Semiconductor Component Search

This project demonstrates MCP (Model Context Protocol) integration with ChromaDB and HuggingFace models for Retrieval-Augmented Generation (RAG).

Project Overview

This system shows how MCP works and its purpose:

  • MCP provides a standardized protocol for context retrieval
  • ChromaDB stores and retrieves semantic embeddings
  • RAG Pipeline combines retrieval with LLM generation
  • Backend API allows document upload and question-answering

Architecture

User Question → API Endpoint → RAG Pipeline
                                    ↓
                    Retrieval from ChromaDB (via embeddings)
                                    ↓
                    LLM generates answer with context
                                    ↓
                    Response to user

Key Components

  1. MCP Server (mcp_server.py): Demonstrates MCP protocol for structured context retrieval
  2. RAG Pipeline (rag_pipeline.py): Handles embeddings (encoding) and LLM (decoding)
  3. FastAPI Backend (main.py): REST API for document upload and Q&A
  4. ChromaDB: Vector database for semantic search

Installation

  1. Install dependencies:
pip install -r requirements.txt
  1. Set environment variables: Create a .env file or use the provided HF API key in config.py

  2. Create example Excel file:

python create_example_excel.py

Usage

1. Start the API Server

python main.py

The API will be available at http://localhost:8000

2. Upload Excel Document

curl -X POST "http://localhost:8000/upload" \
  -H "accept: application/json" \
  -F "file=@examples/semiconductor_components.xlsx"

Or use the FastAPI docs at http://localhost:8000/docs

3. Ask Questions

curl -X POST "http://localhost:8000/ask" \
  -H "Content-Type: application/json" \
  -d '{"question": "What MOSFET components are available?", "n_results": 3}'

API Endpoints

  • GET / - API information
  • GET /health - Health check
  • POST /upload - Upload Excel document
  • POST /ask - Ask a question
  • GET /info - Get collection information

How MCP Works

MCP (Model Context Protocol) serves as a standardized interface for:

  • Context Retrieval: Structured way to query and retrieve relevant information
  • Tool Definition: Clear specification of available operations
  • Protocol Communication: Standardized communication between components

In this project:

  1. MCP server defines tools for querying ChromaDB
  2. RAG pipeline uses MCP principles for context retrieval
  3. Backend integrates MCP concepts for document processing

Models Used

  • Encoding (Embeddings): sentence-transformers/all-MiniLM-L6-v2
  • Decoding (LLM): Llama model from HuggingFace (or fallback to GPT-2)

Example Questions

  • "What MOSFET components are available?"
  • "Show me voltage regulators from Texas Instruments"
  • "What components work with 5V?"
  • "List all temperature sensors"

Project Structure

MCP2/
├── main.py                 # FastAPI backend
├── rag_pipeline.py         # RAG pipeline with embeddings & LLM
├── mcp_server.py          # MCP server for ChromaDB
├── config.py              # Configuration
├── create_example_excel.py # Generate example data
├── requirements.txt       # Dependencies
├── examples/              # Example Excel files
└── chroma_db/            # ChromaDB storage (created automatically)

Notes

  • First run will download models from HuggingFace (requires API key)
  • ChromaDB data persists in ./chroma_db/ directory
  • Uploaded files are stored in ./uploads/ directory

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选