SendPulse Chatbots MCP Server

SendPulse Chatbots MCP Server

Enables interaction with SendPulse Chatbots API to manage chatbot accounts, retrieve bot information, and access dialog conversations. Supports flexible authentication through API credentials or OAuth tokens for comprehensive chatbot management through natural language.

Category
访问服务器

README

MCP Server for SendPulse Chatbots

This project is an implementation of a Model Context Protocol (MCP) server designed to work with the SendPulse Chatbots API. It allows Large Language Models (LLMs) like those from OpenAI to interact with the SendPulse API through a standardized set of tools.

This server is built with TypeScript and runs on Node.js using the Express framework.

Features

The server exposes a combination of global and universal, channel-specific tools to the LLM.

Global Tools

These tools provide general, account-wide information.

  • get_account_info: Returns information about the current SendPulse account, including pricing plan, message counts, bots, contacts, etc.
  • get_bots_list: Returns a list of all connected chatbots with details for each.
  • get_dialogs: Returns a list of dialogs from all channels, with support for pagination and sorting.

Universal Tools

These tools perform actions on specific channels. They require a channel parameter to be specified.

  • send_message: Sends a text message to a contact.
    • channel: The channel to use. Supported values: whatsapp, telegram, instagram, messenger, livechat, viber.
    • contact_id: The ID of the recipient.
    • text: The message content.

Authentication

The server supports two flexible methods for authenticating requests to the SendPulse API, which are handled on a per-session basis.

Method 1: API ID & Secret (Recommended)

The client can provide SendPulse API credentials by sending two custom HTTP headers:

  • x-sp-id: Your SendPulse API ID.
  • x-sp-secret: Your SendPulse API Secret.

Upon receiving these headers, the MCP server will automatically perform the OAuth 2.0 client_credentials flow to obtain a temporary access token from SendPulse. These tokens are cached in memory to improve performance for subsequent requests from the same user (same API ID).

Method 2: Direct OAuth Token

The client can provide a pre-existing, valid SendPulse OAuth 2.0 token directly. This is supported in two ways:

  1. Via Authorization Header (Standard):
    • Authorization: Bearer <your_oauth_token>
  2. Via MCP initialize Request Body (Legacy/Compatibility):
    • As part of the MCP JSON configuration.

Getting Started

Prerequisites

  • Node.js (v18 or later recommended)
  • npm (usually comes with Node.js)

Installation

  1. Clone the repository (if applicable).
  2. Install the project dependencies:
    npm install
    

Build

To build the project, run the following command.

npm run build

Running the Server

Once the project is built, you can start the server:

npm start

You should see a confirmation message in your console: SendPulse MCP HTTP Server running on http://localhost:3000/mcp

Exposing the TEST Server with ngrok

To make your local server accessible to services like the OpenAI sandbox, you need to expose it to the internet. You can use ngrok for this purpose. Open a new terminal window and run:

ngrok http 3000

Ngrok will provide you with a public https:// URL (e.g., https://random-string.ngrok-free.app). Use this URL (https://random-string.ngrok-free.app/mcp) when configuring the MCP tool in your LLM client.

Note: To bypass the ngrok browser warning page, you may need to configure your LLM client to send an additional header with every request, for example: ngrok-skip-browser-warning: "true".

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选