Sentinel MCP Server

Sentinel MCP Server

Sentinel is an enterprise-grade security server that integrates tools like Semgrep, Trivy, and Gitleaks via Docker to perform automated vulnerability scanning and compliance checks. It enables users to conduct static analysis, secret detection, and AI-powered threat modeling directly through Model Context Protocol-compatible IDEs.

Category
访问服务器

README

Sentinel MCP Server

Sentinel is a robust, enterprise-grade Security MCP (Model Context Protocol) Server designed for reliability, compliance, and easy integration with IDEs like VS Code and Antigravity.

🛡️ Features

  • Robust Execution: Automatic retries for Docker commands, graceful timeout handling, and custom error reporting.
  • Compliance Ready: Built-in support for CIS Benchmark scanning via Trivy.
  • Structured Logging: All logs are output in JSON format for easy parsing and monitoring.
  • Dockerized Tools: Runs all security tools in isolated Docker containers—no local tool installation required.

🧰 Included Tools

Tool Function Docker Image
Semgrep SAST (Static Analysis) returntocorp/semgrep (Rules: OWASP Top 10, CWE Top 25, Security Audit)
Trivy SCA & Compliance aquasec/trivy
Grype SCA (Vulnerability Scanning) anchore/grype
Gitleaks Secret Scanning zricethezav/gitleaks
OWASP ZAP DAST (Web Scanning) owasp/zap2docker-stable
ClamAV Malware Scanning clamav/clamav
Schemathesis API Fuzzing schemathesis/schemathesis:stable
EOL Scanner Runtime/Framework EOL Checks Built-in (endoflife.date API)
Crypto Scanner SSL/TLS Compliance drwetter/testssl.sh
AI Threat Modeler STRIDE Analysis Built-in (LLM Powered + Code Context + Mermaid DFD)

🚀 Getting Started

Prerequisites

  • Docker: Must be installed and running.
  • Python: Version 3.13 or higher.

Installation

  1. Clone the repository (if applicable) or navigate to the project directory:

    cd sentinel-mcp-server
    
  2. Create a virtual environment:

    python3 -m venv .venv
    source .venv/bin/activate
    
  3. Install dependencies:

    pip install .
    

Running the Server

To start the MCP server manually (for testing):

mcp run python src/sentinel/server.py

Manual Scanning (CLI)

You can also scan any project directory directly from the terminal using the included utility script:

# Scan a specific project directory
python3 scan_project.py /path/to/your/project

# Run only specific scans (e.g., secrets)
python3 scan_project.py /path/to/your/project --type secrets

💻 IDE Configuration

VS Code

To use Sentinel with the MCP Servers extension in VS Code, add the following to your MCP settings file (typically ~/Library/Application Support/Code/User/globalStorage/mcp-servers.json):

{
  "mcpServers": {
    "sentinel": {
      "command": "/Users/pranjalsharma/Documents/SourceCode/appsec/sentinel-mcp-server/.venv/bin/python3",
      "args": [
        "/Users/pranjalsharma/Documents/SourceCode/appsec/sentinel-mcp-server/src/sentinel/server.py"
      ],
      "env": {
        "SENTINEL_LOG_LEVEL": "INFO"
      }
    }
  }
}

Replace /ABSOLUTE/PATH/TO/... with the actual full path to your project directory.

⚙️ Configuration

You can configure Sentinel using environment variables:

Variable Description Default
SENTINEL_LOG_LEVEL Logging level (DEBUG, INFO, WARN, ERROR) INFO
SENTINEL_DOCKER_TIMEOUT Timeout for Docker commands in seconds 600
SENTINEL_SEMGREP_IMAGE Custom Docker image for Semgrep returntocorp/semgrep
SENTINEL_TRIVY_IMAGE Custom Docker image for Trivy aquasec/trivy
SENTINEL_GRYPE_IMAGE Custom Docker image for Grype anchore/grype
SENTINEL_TESTSSL_IMAGE Custom Docker image for testssl.sh drwetter/testssl.sh
SENTINEL_SCHEMATHESIS_IMAGE Custom Docker image for Schemathesis schemathesis/schemathesis:stable
SENTINEL_LLM_API_KEY API Key for AI Threat Modeling (e.g., OpenAI) None (Falls back to heuristic)
SENTINEL_LLM_MODEL LLM Model to use gpt-4o

🏗️ Project Structure

src/sentinel/
├── core/           # Core logic (logging, exceptions, config)
├── services/       # Business logic (scanners, compliance)
├── tools/          # Tool execution (Docker runner)
└── server.py       # Main MCP entry point

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选