
Sequential Questioning MCP Server
A specialized server that enables LLMs to gather specific information through sequential questioning, implementing the MCP standard for seamless integration with LLM clients.
README
Sequential Questioning MCP Server
A specialized server that enables LLMs (Large Language Models) to gather specific information through sequential questioning. This project implements the MCP (Model Control Protocol) standard for seamless integration with LLM clients.
Project Status
🎉 Version 1.0.0 Released 🎉
The Sequential Questioning MCP Server is now complete and ready for production deployment. All planned features have been implemented, tested, and documented.
Features
- Sequential Questioning Engine: Generates contextually appropriate follow-up questions based on previous responses
- MCP Protocol Support: Full implementation of the MCP specification for integration with LLMs
- Robust API: RESTful API with comprehensive validation and error handling
- Vector Database Integration: Efficient storage and retrieval of question patterns
- Comprehensive Monitoring: Performance metrics and observability with Prometheus and Grafana
- Production-Ready Deployment: Kubernetes deployment configuration with multi-environment support
- High Availability: Horizontal Pod Autoscaler and Pod Disruption Budget for production reliability
- Security: Network policies to restrict traffic and secure the application
Documentation
- API Reference
- Architecture
- Usage Examples
- Deployment Guide
- Operational Runbook
- Load Testing
- Deployment Verification
- Final Deployment Plan
- Release Notes
Getting Started
Prerequisites
- Python 3.10+
- Docker and Docker Compose (for local development)
- Kubernetes cluster (for production deployment)
- PostgreSQL 15.4+
- Access to a Qdrant instance
Quick Start
The easiest way to get started is to use our initialization script:
./scripts/initialize_app.sh
This script will:
- Check if Docker is running
- Start all necessary containers with Docker Compose
- Run database migrations automatically
- Provide information on how to access the application
The application will be available at http://localhost:8001
Local Development
-
Clone the repository
git clone https://github.com/your-organization/sequential-questioning.git cd sequential-questioning
-
Install dependencies
pip install -e ".[dev]"
-
Set up environment variables
cp .env.example .env # Edit .env file with your configuration
-
Run the development server
uvicorn app.main:app --reload
Docker Deployment
docker-compose up -d
Database Setup
If you're starting the application manually, don't forget to run the database migrations:
export DATABASE_URL="postgresql://postgres:postgres@localhost:5432/postgres"
bash scripts/run_migrations.sh
Kubernetes Deployment
-
Development Environment
kubectl apply -k k8s/overlays/dev
-
Staging Environment
kubectl apply -k k8s/overlays/staging
-
Production Environment
kubectl apply -k k8s/overlays/prod
See the Final Deployment Plan and Operational Runbook for detailed instructions.
Monitoring
Access Prometheus and Grafana dashboards for monitoring:
kubectl port-forward -n monitoring svc/prometheus 9090:9090
kubectl port-forward -n monitoring svc/grafana 3000:3000
CI/CD Pipeline
Automated CI/CD pipeline with GitHub Actions:
- Continuous Integration: Linting, type checking, and testing
- Continuous Deployment: Automated deployments to dev, staging, and production
- Deployment Verification: Automated checks post-deployment
Testing
Run the test suite:
pytest
Run performance tests:
python -m tests.performance.test_sequential_questioning_load
Troubleshooting
Database Tables Not Created
If the application is running but the database tables don't exist:
- Make sure the database container is running
- Run the database migrations manually:
export DATABASE_URL="postgresql://postgres:postgres@localhost:5432/postgres" bash scripts/run_migrations.sh
Pydantic Version Compatibility
If you encounter the error pydantic.errors.PydanticImportError: BaseSettings has been moved to the pydantic-settings package
, ensure that:
- The
pydantic-settings
package is included in your dependencies - You're importing
BaseSettings
frompydantic_settings
instead of directly frompydantic
This project uses Pydantic v2.x which moved BaseSettings
to a separate package.
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
License
Contact
For support or inquiries, contact support@example.com
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。