Sequential Questioning MCP Server

Sequential Questioning MCP Server

A specialized server that enables LLMs to gather specific information through sequential questioning, implementing the MCP standard for seamless integration with LLM clients.

Category
访问服务器

README

Sequential Questioning MCP Server

A specialized server that enables LLMs (Large Language Models) to gather specific information through sequential questioning. This project implements the MCP (Model Control Protocol) standard for seamless integration with LLM clients.

Project Status

🎉 Version 1.0.0 Released 🎉

The Sequential Questioning MCP Server is now complete and ready for production deployment. All planned features have been implemented, tested, and documented.

Features

  • Sequential Questioning Engine: Generates contextually appropriate follow-up questions based on previous responses
  • MCP Protocol Support: Full implementation of the MCP specification for integration with LLMs
  • Robust API: RESTful API with comprehensive validation and error handling
  • Vector Database Integration: Efficient storage and retrieval of question patterns
  • Comprehensive Monitoring: Performance metrics and observability with Prometheus and Grafana
  • Production-Ready Deployment: Kubernetes deployment configuration with multi-environment support
  • High Availability: Horizontal Pod Autoscaler and Pod Disruption Budget for production reliability
  • Security: Network policies to restrict traffic and secure the application

Documentation

Getting Started

Prerequisites

  • Python 3.10+
  • Docker and Docker Compose (for local development)
  • Kubernetes cluster (for production deployment)
  • PostgreSQL 15.4+
  • Access to a Qdrant instance

Quick Start

The easiest way to get started is to use our initialization script:

./scripts/initialize_app.sh

This script will:

  1. Check if Docker is running
  2. Start all necessary containers with Docker Compose
  3. Run database migrations automatically
  4. Provide information on how to access the application

The application will be available at http://localhost:8001

Local Development

  1. Clone the repository

    git clone https://github.com/your-organization/sequential-questioning.git
    cd sequential-questioning
    
  2. Install dependencies

    pip install -e ".[dev]"
    
  3. Set up environment variables

    cp .env.example .env
    # Edit .env file with your configuration
    
  4. Run the development server

    uvicorn app.main:app --reload
    

Docker Deployment

docker-compose up -d

Database Setup

If you're starting the application manually, don't forget to run the database migrations:

export DATABASE_URL="postgresql://postgres:postgres@localhost:5432/postgres"
bash scripts/run_migrations.sh

Kubernetes Deployment

  1. Development Environment

    kubectl apply -k k8s/overlays/dev
    
  2. Staging Environment

    kubectl apply -k k8s/overlays/staging
    
  3. Production Environment

    kubectl apply -k k8s/overlays/prod
    

See the Final Deployment Plan and Operational Runbook for detailed instructions.

Monitoring

Access Prometheus and Grafana dashboards for monitoring:

kubectl port-forward -n monitoring svc/prometheus 9090:9090
kubectl port-forward -n monitoring svc/grafana 3000:3000

CI/CD Pipeline

Automated CI/CD pipeline with GitHub Actions:

  • Continuous Integration: Linting, type checking, and testing
  • Continuous Deployment: Automated deployments to dev, staging, and production
  • Deployment Verification: Automated checks post-deployment

Testing

Run the test suite:

pytest

Run performance tests:

python -m tests.performance.test_sequential_questioning_load

Troubleshooting

Database Tables Not Created

If the application is running but the database tables don't exist:

  1. Make sure the database container is running
  2. Run the database migrations manually:
    export DATABASE_URL="postgresql://postgres:postgres@localhost:5432/postgres"
    bash scripts/run_migrations.sh
    

Pydantic Version Compatibility

If you encounter the error pydantic.errors.PydanticImportError: BaseSettings has been moved to the pydantic-settings package, ensure that:

  1. The pydantic-settings package is included in your dependencies
  2. You're importing BaseSettings from pydantic_settings instead of directly from pydantic

This project uses Pydantic v2.x which moved BaseSettings to a separate package.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

License

MIT License

Contact

For support or inquiries, contact support@example.com

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选