Sequential-Thinking
A MCP server that implements sequential thinking protocols, provides structured problem-solving methods, decomposes complex problems into manageable steps, and supports iterative optimization and alternative reasoning paths.
README
顺序思维服务器 Sequential Thinking
一个实现顺序思维协议的MCP服务器,提供结构化的问题解决方法,将复杂问题分解为可管理的步骤,并支持迭代优化和替代推理路径。 A MCP server that implements sequential thinking protocols, provides structured problem-solving methods, decomposes complex problems into manageable steps, and supports iterative optimization and alternative reasoning paths.## 工具列表 Tool List
本MCP服务封装下列工具,可让模型通过标准化接口调用以下功能。 本MCP服务封装下列工具,可让模型通过标准化接口调用以下功能。
| 工具 Tool | 描述 Description |
|---|---|
| sequentialthinking | A detailed tool for dynamic and reflective problem-solving through thoughts. This tool helps analyze problems through a flexible thinking process that can adapt and evolve. Each thought can build on, question, or revise previous insights as understanding deepens. When to use this tool: - Breaking down complex problems into steps - Planning and design with room for revision - Analysis that might need course correction - Problems where the full scope might not be clear initially - Problems that require a multi-step solution - Tasks that need to maintain context over multiple steps - Situations where irrelevant information needs to be filtered out Key features: - You can adjust total_thoughts up or down as you progress - You can question or revise previous thoughts - You can add more thoughts even after reaching what seemed like the end - You can express uncertainty and explore alternative approaches - Not every thought needs to build linearly - you can branch or backtrack - Generates a solution hypothesis - Verifies the hypothesis based on the Chain of Thought steps - Repeats the process until satisfied - Provides a correct answer Parameters explained: - thought: Your current thinking step, which can include: * Regular analytical steps * Revisions of previous thoughts * Questions about previous decisions * Realizations about needing more analysis * Changes in approach * Hypothesis generation * Hypothesis verification - next_thought_needed: True if you need more thinking, even if at what seemed like the end - thought_number: Current number in sequence (can go beyond initial total if needed) - total_thoughts: Current estimate of thoughts needed (can be adjusted up/down) - is_revision: A boolean indicating if this thought revises previous thinking - revises_thought: If is_revision is true, which thought number is being reconsidered - branch_from_thought: If branching, which thought number is the branching point - branch_id: Identifier for the current branch (if any) - needs_more_thoughts: If reaching end but realizing more thoughts needed You should: 1. Start with an initial estimate of needed thoughts, but be ready to adjust 2. Feel free to question or revise previous thoughts 3. Don't hesitate to add more thoughts if needed, even at the "end" 4. Express uncertainty when present 5. Mark thoughts that revise previous thinking or branch into new paths 6. Ignore information that is irrelevant to the current step 7. Generate a solution hypothesis when appropriate 8. Verify the hypothesis based on the Chain of Thought steps 9. Repeat the process until satisfied with the solution 10. Provide a single, ideally correct answer as the final output 11. Only set next_thought_needed to false when truly done and a satisfactory answer is reached |
检查服务 ## Inspector
工具在线测试: https://mcp.xiaobenyang.com/inspector/1777316659904515
Online Tool test https://mcp.xiaobenyang.com/inspector/1777316659904515
服务配置 MCP Server Config
如何获取 XBY-APIKEY ? How to get XBY-APIKEY ?
访问小笨羊科技网站 https://xiaobenyang.com,注册用户即可获得APIKEY Visit XiaoBenYang website https://xiaobenyang.com, register and get the APIKEY.
SSE
{
"mcpServers": {
"顺序思维服务器": {
"headers": {
"XBY-APIKEY": "<YOUR_XBY_APIKEY>"
},
"type": "sse",
"url": "https://mcp.xiaobenyang.com/1777316659904515/sse"
}
}
}
STREAMABLE HTTP
{
"mcpServers": {
"顺序思维服务器": {
"headers": {
"XBY-APIKEY": "<YOUR_XBY_APIKEY>"
},
"type": "streamable_http",
"url": "https://mcp.xiaobenyang.com/1777316659904515/mcp"
}
}
}
STDIO
{
"mcpServers": {
"顺序思维服务器": {
"command": "npx",
"args": [
"-y",
"xiaobenyang-mcp"
],
"env": {
"XBY_APIKEY": "<YOUR_XBY_APIKEY>",
"mcpId": "1777316659904515",
},
"transport": "stdio"
}
}
}
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。