sequential-thinking-claude-code

sequential-thinking-claude-code

sequential-thinking-claude-code

Category
访问服务器

README

sequential-thinking-claude-code

An enhanced version of the original mcp-sequentialthinking-tools by Scott Spence, which was adapted from the MCP Sequential Thinking Server.

This enhanced edition transforms the original framework into an intelligent tool recommendation system with:

  • 26 pre-configured tools including all Claude Code tools
  • Automatic tool recommendations based on thought content
  • Deep integration with Basic Memory MCP for knowledge management
  • Pattern-based intelligence that suggests the right tools at the right time

Credits: Original repository by Scott Spence. Basic Memory tools from Basic Machines Co. Enhanced with permission.

<a href="https://glama.ai/mcp/servers/zl990kfusy"> <img width="380" height="200" src="https://glama.ai/mcp/servers/zl990kfusy/badge" /> </a>

A Model Context Protocol (MCP) server that combines sequential thinking with tool usage suggestions. For each step in the problem-solving process, it provides confidence scores and rationale for tools that could be used, based on tools available in your environment.

What's New in This Enhanced Edition

🚀 Key Improvements

  • Auto-recommends tools based on your thought content (no manual specification needed!)
  • 26 pre-integrated tools ready to use out of the box
  • Intelligent pattern matching that understands context
  • Basic Memory integration for persistent knowledge management

📦 Included Tool Sets

Claude Code Tools (17 tools)

  • File operations: Read, Write, Edit, MultiEdit, LS, Glob, Grep
  • Execution: Bash, Agent
  • Notebooks: NotebookRead, NotebookEdit
  • Web: WebFetch, WebSearch
  • Tasks: TodoRead, TodoWrite
  • Special: StickerRequest

Basic Memory Tools (9 tools)

  • mcp__basic-memory__write_note - Record knowledge
  • mcp__basic-memory__read_note - Access saved information
  • mcp__basic-memory__search_notes - Search your knowledge base
  • mcp__basic-memory__build_context - Follow knowledge connections
  • And more...

Original Features (Enhanced)

  • 🤔 Dynamic and reflective problem-solving through sequential thoughts
  • 🔄 Flexible thinking process that adapts and evolves
  • 🌳 Support for branching and revision of thoughts
  • 🛠️ NEW: Automatic tool suggestions based on thought content
  • 📊 ENHANCED: Pre-configured confidence scores for each tool
  • 🔍 ENHANCED: Context-aware rationale generation
  • 📝 Step tracking with expected outcomes
  • 🔄 Progress monitoring with previous and remaining steps
  • 🎯 ENHANCED: Intelligent alternative tool suggestions

How It Works

Original Behavior

The original server provided a framework for tool recommendations but required manual tool specification.

Enhanced Behavior

This version automatically analyzes your thoughts and recommends appropriate tools:

// You think: "I need to save this important decision"
// Server automatically recommends: mcp__basic-memory__write_note (0.95 confidence)

// You think: "Search for all TODO comments" 
// Server automatically recommends: Grep (0.85), Agent (0.75)

// You think: "I want some Claude stickers!"
// Server automatically recommends: StickerRequest (0.95)

Each recommendation includes:

  • Confidence score (0-1) based on pattern matching
  • Clear rationale explaining why the tool fits
  • Priority level for execution order
  • Alternative tools that could also work

The enhanced pattern matching understands context like:

  • "record", "save", "document" → Basic Memory write_note
  • "read", "examine", "check" → Read tool
  • "multiple edits" → MultiEdit tool
  • "run", "execute" → Bash tool

Example Usage

Here's an example of how the server guides tool usage:

{
	"thought": "Initial research step to understand what universal reactivity means in Svelte 5",
	"current_step": {
		"step_description": "Gather initial information about Svelte 5's universal reactivity",
		"expected_outcome": "Clear understanding of universal reactivity concept",
		"recommended_tools": [
			{
				"tool_name": "search_docs",
				"confidence": 0.9,
				"rationale": "Search Svelte documentation for official information",
				"priority": 1
			},
			{
				"tool_name": "tavily_search",
				"confidence": 0.8,
				"rationale": "Get additional context from reliable sources",
				"priority": 2
			}
		],
		"next_step_conditions": [
			"Verify information accuracy",
			"Look for implementation details"
		]
	},
	"thought_number": 1,
	"total_thoughts": 5,
	"next_thought_needed": true
}

The server tracks your progress and supports:

  • Creating branches to explore different approaches
  • Revising previous thoughts with new information
  • Maintaining context across multiple steps
  • Suggesting next steps based on current findings

Configuration

This server requires configuration through your MCP client. Here are examples for different environments:

Cline Configuration

Add this to your Cline MCP settings:

{
	"mcpServers": {
		"mcp-sequentialthinking-tools": {
			"command": "npx",
			"args": ["-y", "mcp-sequentialthinking-tools"]
		}
	}
}

Claude Desktop with WSL Configuration

For WSL environments, add this to your Claude Desktop configuration:

{
	"mcpServers": {
		"mcp-sequentialthinking-tools": {
			"command": "wsl.exe",
			"args": [
				"bash",
				"-c",
				"source ~/.nvm/nvm.sh && /home/username/.nvm/versions/node/v20.12.1/bin/npx mcp-sequentialthinking-tools"
			]
		}
	}
}

API

The server implements a single MCP tool with configurable parameters:

sequentialthinking_tools

A tool for dynamic and reflective problem-solving through thoughts, with intelligent tool recommendations.

Parameters:

  • thought (string, required): Your current thinking step
  • next_thought_needed (boolean, required): Whether another thought step is needed
  • thought_number (integer, required): Current thought number
  • total_thoughts (integer, required): Estimated total thoughts needed
  • is_revision (boolean, optional): Whether this revises previous thinking
  • revises_thought (integer, optional): Which thought is being reconsidered
  • branch_from_thought (integer, optional): Branching point thought number
  • branch_id (string, optional): Branch identifier
  • needs_more_thoughts (boolean, optional): If more thoughts are needed
  • current_step (object, optional): Current step recommendation with:
    • step_description: What needs to be done
    • recommended_tools: Array of tool recommendations with confidence scores
    • expected_outcome: What to expect from this step
    • next_step_conditions: Conditions for next step
  • previous_steps (array, optional): Steps already recommended
  • remaining_steps (array, optional): High-level descriptions of upcoming steps

Development

Setup

  1. Clone the repository
  2. Install dependencies:
pnpm install
  1. Build the project:
pnpm build
  1. Run in development mode:
pnpm dev

Publishing

The project uses changesets for version management. To publish:

  1. Create a changeset:
pnpm changeset
  1. Version the package:
pnpm changeset version
  1. Publish to npm:
pnpm release

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License - see the LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选