Sequential Thinking MCP Server
Enables AI assistants to work through complex problems step-by-step with dynamic thought processes, allowing for revision of previous steps, exploration of alternative approaches, and flexible planning as understanding deepens.
README
Sequential Thinking MCP Server - Streamable HTTP Implementation
An MCP server that provides a powerful sequential thinking tool for complex problem-solving through thoughts.
This server enables AI assistants to work through problems step-by-step, with the ability to revise, branch, and explore alternative approaches as understanding deepens.
Features
- Dynamic Thought Process: Adjust the number of thoughts as you progress
- Revision Capability: Question and revise previous thoughts
- Branching Logic: Explore alternative approaches
- Flexible Planning: Add more thoughts even after reaching initial estimates
- Context Preservation: Maintain context across multiple thinking steps
Getting Started
To get started with this server, clone the repository and install the necessary dependencies.
git clone https://github.com/camilovelezr/server-sequential-thinking.git
cd server-sequential-thinking
npm install
Usage
Streamable HTTP Transport
The server uses the modern Streamable HTTP transport protocol for communication. Start the server:
npm start
The server will start on http://127.0.0.1:3000 by default. You can change the port using the PORT environment variable:
PORT=8080 npm start
Endpoints
- MCP Endpoint:
POST/GET/DELETE http://127.0.0.1:3000/mcp- Main MCP communication endpointPOST- Send messages to the server (initialize, tool calls, etc.)GET- Establish SSE stream for server-to-client notificationsDELETE- Terminate session
- Health Check:
GET http://127.0.0.1:3000/health- Check server status and active sessions - Test Interface:
GET http://127.0.0.1:3000/- Browser-based test interface
Transport Features
The Streamable HTTP transport provides several advantages:
- Session-Based State: Manages state for each client session in memory. The core server is long-running and can be scaled with sticky sessions.
- Flexible Streaming: Server can upgrade any response to SSE for streaming
- Infrastructure Compatible: Works with standard HTTP middleware and proxies
- Resumable Connections: Support for connection resumption
- Automatic Session Cleanup: Inactive sessions and their associated data are automatically cleared after 1 hour to conserve resources.
Security
The implementation includes security measures:
- Origin header validation to prevent DNS rebinding attacks
- Server binds only to localhost (127.0.0.1)
- CORS headers are properly configured
- Session IDs are cryptographically secure
- Privacy by Design: No sensitive tool inputs or outputs are logged to the console.
Adding to Cursor
To use this server with Cursor, add the following to your Cursor configuration:
{
"mcpServers": {
"sequential-thinking": {
"url": "http://localhost:3000/mcp"
},
}
}
Running with Docker
You can also run the server in a containerized environment using Docker for easier deployment and isolation.
-
Build the Docker image:
docker build -t mcp-server-sequential-thinking . -
Run the Docker container:
docker run -p 3000:3000 mcp-server-sequential-thinking
The server will be accessible at http://127.0.0.1:3000.
Available Tool
sequentialthinking
A detailed tool for dynamic and reflective problem-solving through thoughts.
When to use:
- Breaking down complex problems into steps
- Planning and design with room for revision
- Analysis that might need course correction
- Problems where the full scope might not be clear initially
- Multi-step solutions requiring context preservation
Parameters:
thought(string, required): Your current thinking stepnextThoughtNeeded(boolean, required): Whether another thought step is neededthoughtNumber(integer, required): Current thought numbertotalThoughts(integer, required): Estimated total thoughts neededisRevision(boolean, optional): Whether this revises previous thinkingrevisesThought(integer, optional): Which thought is being reconsideredbranchFromThought(integer, optional): Branching point thought numberbranchId(string, optional): Branch identifierneedsMoreThoughts(boolean, optional): If more thoughts are needed
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。