Sequential Thinking MCP Server
Enables structured, step-by-step problem-solving with dynamic revision and branching capabilities. Supports breaking down complex problems into manageable steps while allowing course corrections and alternative reasoning paths.
README
Sequential Thinking MCP Server
An MCP server implementation that provides a tool for dynamic and reflective problem-solving through a structured thinking process.
Features
- Break down complex problems into manageable steps
- Revise and refine thoughts as understanding deepens
- Branch into alternative paths of reasoning
- Adjust the total number of thoughts dynamically
- Generate and verify solution hypotheses
Tool
sequential_thinking
Facilitates a detailed, step-by-step thinking process for problem-solving and analysis.
Inputs:
thought(string): The current thinking stepnextThoughtNeeded(boolean): Whether another thought step is neededthoughtNumber(integer): Current thought numbertotalThoughts(integer): Estimated total thoughts neededisRevision(boolean, optional): Whether this revises previous thinkingrevisesThought(integer, optional): Which thought is being reconsideredbranchFromThought(integer, optional): Branching point thought numberbranchId(string, optional): Branch identifierneedsMoreThoughts(boolean, optional): If more thoughts are needed
Usage
The Sequential Thinking tool is designed for:
- Breaking down complex problems into steps
- Planning and design with room for revision
- Analysis that might need course correction
- Problems where the full scope might not be clear initially
- Tasks that need to maintain context over multiple steps
- Situations where irrelevant information needs to be filtered out
Configuration
Usage with Claude Desktop
Add this to your claude_desktop_config.json:
npx
{
"mcpServers": {
"sequential-thinking": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-sequential-thinking"
]
}
}
}
docker
{
"mcpServers": {
"sequentialthinking": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"mcp/sequentialthinking"
]
}
}
}
To disable logging of thought information set env var: DISABLE_THOUGHT_LOGGING to true.
Comment
Usage with VS Code
For quick installation, click one of the installation buttons below...
For manual installation, you can configure the MCP server using one of these methods:
Method 1: User Configuration (Recommended)
Add the configuration to your user-level MCP configuration file. Open the Command Palette (Ctrl + Shift + P) and run MCP: Open User Configuration. This will open your user mcp.json file where you can add the server configuration.
Method 2: Workspace Configuration
Alternatively, you can add the configuration to a file called .vscode/mcp.json in your workspace. This will allow you to share the configuration with others.
For more details about MCP configuration in VS Code, see the official VS Code MCP documentation.
For NPX installation:
{
"servers": {
"sequential-thinking": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-sequential-thinking"
]
}
}
}
For Docker installation:
{
"servers": {
"sequential-thinking": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"mcp/sequentialthinking"
]
}
}
}
Building
Docker:
docker build -t mcp/sequentialthinking -f src/sequentialthinking/Dockerfile .
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。