Sequential-Thinking-Tools

Sequential-Thinking-Tools

A sequential thinking tool based on the MCP protocol, used to break down complex problems into manageable steps and provide intelligent tool recommendations for each step.

Category
访问服务器

README

顺序思维工具 Sequential Thinking Tools

一个基于MCP协议的顺序思维工具,用于将复杂问题分解为可管理的步骤,并为每个步骤提供智能工具推荐。 A sequential thinking tool based on the MCP protocol, used to break down complex problems into manageable steps and provide intelligent tool recommendations for each step.## 工具列表 Tool List

本MCP服务封装下列工具,可让模型通过标准化接口调用以下功能。 本MCP服务封装下列工具,可让模型通过标准化接口调用以下功能。

工具 Tool 描述 Description
sequentialthinking_tools A detailed tool for dynamic and reflective problem-solving through thoughts. This tool helps analyze problems through a flexible thinking process that can adapt and evolve. Each thought can build on, question, or revise previous insights as understanding deepens. IMPORTANT: This server facilitates sequential thinking with MCP tool coordination. The LLM analyzes available tools and their descriptions to make intelligent recommendations, which are then tracked and organized by this server. When to use this tool: - Breaking down complex problems into steps - Planning and design with room for revision - Analysis that might need course correction - Problems where the full scope might not be clear initially - Problems that require a multi-step solution - Tasks that need to maintain context over multiple steps - Situations where irrelevant information needs to be filtered out - When you need guidance on which tools to use and in what order Key features: - You can adjust total_thoughts up or down as you progress - You can question or revise previous thoughts - You can add more thoughts even after reaching what seemed like the end - You can express uncertainty and explore alternative approaches - Not every thought needs to build linearly - you can branch or backtrack - Generates a solution hypothesis - Verifies the hypothesis based on the Chain of Thought steps - Recommends appropriate tools for each step - Provides rationale for tool recommendations - Suggests tool execution order and parameters - Tracks previous recommendations and remaining steps Parameters explained: - available_mcp_tools: Array of MCP tool names that are available for use (e.g., ["mcp-omnisearch", "mcp-turso-cloud"]) - thought: Your current thinking step, which can include: * Regular analytical steps * Revisions of previous thoughts * Questions about previous decisions * Realizations about needing more analysis * Changes in approach * Hypothesis generation * Hypothesis verification * Tool recommendations and rationale - next_thought_needed: True if you need more thinking, even if at what seemed like the end - thought_number: Current number in sequence (can go beyond initial total if needed) - total_thoughts: Current estimate of thoughts needed (can be adjusted up/down) - is_revision: A boolean indicating if this thought revises previous thinking - revises_thought: If is_revision is true, which thought number is being reconsidered - branch_from_thought: If branching, which thought number is the branching point - branch_id: Identifier for the current branch (if any) - needs_more_thoughts: If reaching end but realizing more thoughts needed - current_step: Current step recommendation, including: * step_description: What needs to be done * recommended_tools: Tools recommended for this step * expected_outcome: What to expect from this step * next_step_conditions: Conditions to consider for the next step - previous_steps: Steps already recommended - remaining_steps: High-level descriptions of upcoming steps You should: 1. Start with an initial estimate of needed thoughts, but be ready to adjust 2. Feel free to question or revise previous thoughts 3. Don't hesitate to add more thoughts if needed, even at the "end" 4. Express uncertainty when present 5. Mark thoughts that revise previous thinking or branch into new paths 6. Ignore information that is irrelevant to the current step 7. Generate a solution hypothesis when appropriate 8. Verify the hypothesis based on the Chain of Thought steps 9. Consider available tools that could help with the current step 10. Provide clear rationale for tool recommendations 11. Suggest specific tool parameters when appropriate 12. Consider alternative tools for each step 13. Track progress through the recommended steps 14. Provide a single, ideally correct answer as the final output 15. Only set next_thought_needed to false when truly done and a satisfactory answer is reached

检查服务 ## Inspector

工具在线测试: https://mcp.xiaobenyang.com/inspector/1777316659590147

Online Tool test https://mcp.xiaobenyang.com/inspector/1777316659590147

服务配置 MCP Server Config

如何获取 XBY-APIKEY ? How to get XBY-APIKEY ?

访问小笨羊科技网站 https://xiaobenyang.com,注册用户即可获得APIKEY Visit XiaoBenYang website https://xiaobenyang.com, register and get the APIKEY.

SSE

{
  "mcpServers": {
    "顺序思维工具": {
      "headers": {
        "XBY-APIKEY": "<YOUR_XBY_APIKEY>"
      },
      "type": "sse",
      "url": "https://mcp.xiaobenyang.com/1777316659590147/sse"
    }
  }
}

STREAMABLE HTTP

{
  "mcpServers": {
    "顺序思维工具": {
      "headers": {
        "XBY-APIKEY": "<YOUR_XBY_APIKEY>"
      },
      "type": "streamable_http",
      "url": "https://mcp.xiaobenyang.com/1777316659590147/mcp"
    }
  }
}

STDIO

{
    "mcpServers": {
        "顺序思维工具": {
          "command": "npx",
          "args": [
            "-y",
            "xiaobenyang-mcp"
          ],
          "env": {
            "XBY_APIKEY": "<YOUR_XBY_APIKEY>",
            "mcpId": "1777316659590147",
          },
          "transport": "stdio"
        }
      }
}

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选