Setup Agent MCP
Enables AI assistants to automatically analyze GitHub repositories and set up development environments by detecting tech stacks, installing dependencies, and verifying project builds. Provides safe tools for repository cloning, file system operations, package installation, and build verification through an allowlisted command system.
README
Setup Agent - Dev Environment Setup
Give me a repo link—I’ll set up the environment.

SetupAgent analyzes a GitHub repository, generates a reproducible setup plan, optionally installs system/tooling dependencies, and verifies the project can build or start.
It works standalone from the CLI and can also be driven by an AI assistant via MCP.
Table of Contents
- What It Solves
- Key Features
- Supported Stacks & OS
- Requirements
- Install
- Quick Start (CLI)
- Artifacts
- MCP Integration (Optional)
- How It Works
- Security Model
- Roadmap
- FAQ
What It Solves
- Unknown or mismatched toolchains (JDK/Maven/Gradle, Python/pip, Node/npm/yarn/pnpm)
- Version drift and missing system packages
- Manual IDE tweaks (e.g., Lombok / annotation processing)
- Container vs. local environment confusion
Key Features
- Auto-detection: Java, Python, Node.js; build tools; container files (
Dockerfile,docker-compose.yml,.devcontainer/) - Reproducible plan: Emits
plan.yaml(machine) +SetupPlan.md(human) - Dry-run by default: Preview exactly what would run; real execution only with
--assume-yes - Safe execution: Strict command allowlist, timeouts, and output truncation
- Verification: Runs language-appropriate tests/build (
./mvnw test,pytest,npm test) - Reports: Summarizes results and next steps in
SetupReport.md - MCP integration: Exposes safe tools so an AI can orchestrate setup
Supported Stacks & OS
Languages / Build
- Java (Maven/Gradle; Lombok guidance)
- Python (pip/uv)
- Node.js (npm/yarn/pnpm)
Operating Systems
- Ubuntu/Debian (apt) — fully supported for execution
- macOS (Homebrew) and Windows (winget/choco) — interfaces stubbed and ready to extend
Containers
- If container files are present, a container plan is suggested alongside a local plan
Requirements
- Python 3.10+
- Git
- Ubuntu/Debian for real execution (apt). macOS/Windows execution paths can be added later.
Install
git clone https://github.com/yourusername/setup_agent.git
cd setup_agent
python3 -m venv .venv
source .venv/bin/activate
pip install -r setup_agent/requirements.txt
Tip: It is safe to start in dry-run mode. No system changes are made unless you pass
--assume-yes.
Quick Start (CLI)
# Show help
python -m setup_agent.cli --help
python -m setup_agent.cli setup --help
# Preview (dry-run): plan + report, no system changes
python -m setup_agent.cli setup https://github.com/spring-projects/spring-petclinic --dry-run
# More examples (preview)
python -m setup_agent.cli setup https://github.com/pallets/flask --dry-run
python -m setup_agent.cli setup https://github.com/vercel/next.js --dry-run
# Execute on Ubuntu/WSL (installs apt packages, builds, verifies)
sudo -v # warm up sudo to avoid prompts
python -m setup_agent.cli setup https://github.com/spring-projects/spring-petclinic --assume-yes
Artifacts
plan.yaml— machine-readable planSetupPlan.md— human-readable steps (auto vs. manual)SetupReport.md— execution & verification summarylogs/setup-*.log— detailed logs
MCP Integration (Optional)
Expose SetupAgent’s safe local tools to an AI assistant.
Start the local MCP server
# Run the stdio MCP server
python -m setup_agent.mcp_server
Register with Claude Desktop (user scope)
# From a terminal on the same machine as Claude Desktop
claude mcp add --scope user setup-agent python -m setup_agent.mcp_server
Check status in Claude chat with /mcp.
Exposed tools
git.clonefs.find/fs.readshell.run(allowlisted commands only)pkg.install(apt; others stubbed)ide.todoartifacts.save
Prefer HTTP instead of stdio? Adapt the server entry point and register the HTTP endpoint with your client.
How It Works
- Scan — Clone and inspect the repository for language/build/container signals
- Infer — Determine required tools/versions (e.g.,
openjdk-17-jdk,pip/uv,npm/yarn/pnpm) - Plan — Emit
plan.yamlandSetupPlan.md(container and local paths when available) - Execute — Run allowlisted commands only. Default is dry-run; real execution with
--assume-yes - Verify — Run project tests/build targets
- Report — Summarize actions, results, and remediation tips
Security Model
- Default dry-run — no changes without
--assume-yes - Allowlist — only safe prefixes are executed:
git,mvn/./mvnw,gradle/./gradlew,npm/yarn/pnpm,python/pip/uv,apt/sudo apt,docker/docker compose,dotnet - Timeouts & truncation — prevents runaway processes and oversized logs
- Least privilege —
sudoonly when installing system packages
Roadmap
- macOS (brew) and Windows (winget/choco) execution paths
- Additional stacks: Go, Rust, .NET
- Container health checks and port probes
- IDE automation helpers (IntelliJ / VS Code)
FAQ
Do I have to use MCP/AI?
No. The CLI works independently. MCP simply lets an AI drive the same safe tools.
Will it modify my system?
Not unless you pass --assume-yes. Dry-run reads and plans only.
Can I use this for production?
This project targets developer environments. For production, prefer containerized or IaC approaches.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。