
Shannon MCP
A comprehensive Model Context Protocol server for Claude Code that provides programmatic management of Claude Code CLI operations through a multi-agent collaborative system.
README
Shannon MCP - Claude Code MCP Server
A comprehensive Model Context Protocol (MCP) server implementation for Claude Code, built using an innovative multi-agent collaborative system.
Overview
Shannon MCP is a Python-based MCP server that provides programmatic management of Claude Code CLI operations. This project replicates and extends the functionality found in the Claude Desktop application, exposing all Claude Code interactions through standardized MCP tools.
Multi-Agent Architecture
This project employs a revolutionary approach: 26 specialized AI agents working collaboratively to implement the entire MCP server specification. Each agent has deep expertise in specific domains and works together through shared memory and orchestration systems.
System Architecture
┌─────────────────────────────────────────────────────────────────┐
│ ORCHESTRATION LAYER │
│ ┌─────────────────┐ ┌──────────────┐ ┌─────────────────┐ │
│ │ Build │ │ Agent │ │ Shared │ │
│ │ Orchestrator │ │ Progress │ │ Memory │ │
│ │ │ │ Tracker │ │ Context │ │
│ └────────┬────────┘ └──────┬───────┘ └────────┬────────┘ │
│ │ │ │ │
│ └───────────────────┴────────────────────┘ │
│ │ │
└──────────────────────────────┼───────────────────────────────────┘
│
┌──────────────────────────────┼───────────────────────────────────┐
│ AGENT LAYER │
│ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Core Architecture │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │Architecture│ │SDK Expert│ │Python MCP│ │Functional│ │ │
│ │ │ Agent │ │ │ │ Expert │ │ Server │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Infrastructure │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Database │ │Streaming │ │ JSONL │ │ Process │ │ │
│ │ │ Storage │ │Concurrency│ │Streaming │ │Management│ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Specialized Agents │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Security │ │ Testing │ │ DevOps │ │Analytics │ │ │
│ │ │Validation│ │ Quality │ │Deployment│ │Monitoring│ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ │ + 14 more agents... │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │
└───────────────────────────────────────────────────────────────────┘
│
┌──────────────────────────────┼───────────────────────────────────┐
│ IMPLEMENTATION LAYER │
│ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ MCP Server Components │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Binary │ │ Session │ │Checkpoint│ │ Hooks │ │ │
│ │ │ Manager │ │ Manager │ │ System │ │Framework │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │
└───────────────────────────────────────────────────────────────────┘
Agent Categories
1. Core Architecture Agents (4)
- Architecture Agent: System design and architectural decisions
- Claude Code SDK Expert: Deep knowledge of Claude Code CLI and SDK
- Python MCP Server Expert: MCP protocol implementation specialist
- Functional MCP Server: Business logic and feature implementation
2. Infrastructure Agents (7)
- Database Storage: SQLite optimization and content-addressable storage
- Streaming Concurrency: Async patterns and stream processing
- JSONL Streaming: Real-time JSONL parsing and handling
- Process Management: System process monitoring
- Filesystem Monitor: Real-time file system change detection
- Platform Compatibility: Cross-platform support
- Storage Algorithms: Content-addressable storage optimization
3. Quality & Security Agents (6)
- Security Validation: Input validation and security implementation
- Testing Quality: Comprehensive test implementation
- Error Handling: Error recovery and user-friendly messages
- Performance Optimizer: Performance profiling and optimization
- Documentation: Technical documentation and examples
- DevOps Deployment: CI/CD and deployment automation
4. Specialized Agents (9)
- Telemetry OpenTelemetry: Observability implementation
- Analytics Monitoring: Usage analytics and reporting
- Integration Specialist: Third-party integrations
- Project Coordinator: Overall project management
- Migration Specialist: Database and config migrations
- SSE Transport: Server-Sent Events implementation
- Resources Specialist: MCP resource exposure
- Prompts Engineer: MCP prompt templates
- Plugin Architect: Plugin system design
How It Works
1. Orchestration Layer
The orchestration layer coordinates all agent activities through specialized commands:
/mcp-build-orchestrator
: Master command that distributes tasks to agents/mcp-agent-progress
: Tracks real-time progress of all agents/mcp-shared-memory
: Enables knowledge sharing between agents/mcp-agent-context
: Manages persistent context for each agent
2. Agent Collaboration
Agents collaborate through several mechanisms:
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Agent A │ │ Shared Memory │ │ Agent B │
│ │────▶│ │◀────│ │
│ Discovers │ │ Stores Pattern │ │ Uses Pattern │
│ Pattern │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────────┐
│ Knowledge Graph │
│ Semantic Search │
│ Pattern Evolution │
└─────────────────────┘
3. Implementation Workflow
graph TD
A[Specification Analysis] --> B[Task Distribution]
B --> C[Agent Assignment]
C --> D[Parallel Implementation]
D --> E[Cross-Agent Review]
E --> F[Integration Testing]
F --> G[Component Completion]
H[Shared Memory] --> D
I[Progress Tracking] --> D
J[Context Persistence] --> D
Building Process
The building process follows these phases:
Phase 1: Core Infrastructure (25 tasks)
- Project setup and MCP server foundation
- Binary Manager implementation
- Session Manager with streaming
- Basic error handling
Phase 2: Advanced Features (25 tasks)
- Agent system implementation
- MCP server management
- Checkpoint system with CAS
- Hooks framework
Phase 3: Analytics & Monitoring (15 tasks)
- Analytics engine
- Process registry
- Settings management
Phase 4: Testing & Documentation (10 tasks)
- Integration testing
- API documentation
- Usage examples
Phase 5: Production Readiness (10 tasks)
- Performance optimization
- Security hardening
- Deployment pipeline
Phase 6: Advanced Integration (10 tasks)
- Claude Desktop integration
- Cloud features
- Enterprise capabilities
Key Features
1. Binary Management
- Automatic Claude Code discovery
- Version detection and validation
- Multi-method search (PATH, NVM, standard locations)
2. Session Orchestration
- Real-time JSONL streaming
- Full process lifecycle management
- Cancellation and cleanup
3. Agent System
- Custom AI agents with specialized prompts
- Background execution tracking
- GitHub import capabilities
4. Checkpoint System
- Git-like versioning for sessions
- Content-addressable storage
- Branching and restoration
5. Hooks Framework
- Event-driven automation
- Command execution on Claude events
- Flexible configuration
Getting Started
-
Prerequisites
- Python 3.11+
- Claude Code CLI installed
- 100MB disk space
-
Agent System Activation
# The agents are already installed in ~/.claude/ # Activate the system python ~/.claude/activate-mcp-system.py
-
Initialize Build Process
# Use the orchestrator to start building /mcp-build-orchestrator init --project-path ~/shannon-mcp
-
Monitor Progress
# Check agent progress /mcp-agent-progress status --detailed
Technical Stack
- Language: Python 3.11+
- Async Framework: asyncio
- MCP SDK: FastMCP pattern
- Storage: SQLite with aiosqlite
- Compression: Zstandard
- Streaming: JSONL with backpressure handling
Development Workflow
- Agents analyze the specification
- Tasks are distributed based on expertise
- Implementation happens in parallel
- Cross-agent reviews ensure quality
- Integration testing validates components
- Documentation is generated automatically
Contributing
This project is built by AI agents, but human contributions are welcome for:
- Bug reports and feature requests
- Testing and validation
- Documentation improvements
- Integration examples
License
MIT License - See LICENSE file for details
Acknowledgments
- Built using Claude Code's multi-agent capabilities
- Based on the Model Context Protocol specification
- Inspired by collaborative AI development patterns
This project demonstrates the future of software development: specialized AI agents working together to build complex systems with minimal human intervention.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。