signal-mcp-server
MCP Server for retrieving Signal messages using signal-export logic.
README
📱 signal-mcp-server
MCP Server for retrieving Signal messages using signal-export logic.
🎯 Overview
This MCP server enables AI agents and tools to access Signal Desktop chat messages and attachments via the Model Context Protocol (MCP).
🛠️ Features
- Retrieve Signal messages from your local Signal Desktop database
- List all Signal chats with contact details and message counts
- Filter messages by chat/contact name
- Paginate through message history with offset and limit
- Support for multiple operating systems (Windows, macOS, Linux)
- Handle encrypted Signal databases
📋 Prerequisites
- Python 3.13 or higher
- UV package manager
- Signal Desktop installed with existing message database
- Node.js and npm (for MCP inspector tools)
- Windows, macOS, or Linux operating system
1. Signal Desktop
-
Official Download Page:
https://signal.org/download/ -
Direct Download Links:
Note: Signal Desktop requires Signal to be installed on your phone for initial setup.
2. Python
-
Official Download Page:
https://www.python.org/downloads/ -
Direct Download for Python 3.13.5:
Python 3.13.5 Release Page -
Download the installer for your OS (Windows, macOS, Linux) and follow the setup instructions.
3. UV (Python Package Manager)
-
Official Documentation & Source:
https://github.com/astral-sh/uv
UV Documentation -
Installation (Windows):
irm https://astral.sh/uv/install.ps1 | iexOr, using pip (if you already have Python and pip installed):
pip install uv -
Installation (macOS/Linux):
curl -LsSf https://astral.sh/uv/install.sh | sh -
More Info:
UV Installation Guide
4. Claude Desktop
-
Official Download Page:
https://claude.ai/download -
Download the installer for your OS (Windows, macOS) and follow the setup instructions.
🚀 Installation Signal MCP Server
-
Clone the repository:
git clone https://github.com/stefanstranger/signal-mcp-server.git cd signal-mcp-server -
Create a virtual environment:
uv venv .venv --python 3.13 -
Activate the virtual environment:
- Windows PowerShell:
.\.venv\Scripts\Activate.ps1 - macOS/Linux:
source .venv/bin/activate
- Windows PowerShell:
-
Install dependencies:
uv pip install fastmcp signal-export
⚙️ Configuration
🔧 Claude Desktop Setup
Usage with Claude Desktop Add the following to your claude_desktop_config.json file:
{
"mcpServers": {
"signal-mcp-server": {
"type": "stdio",
"command": "uv",
"args": [
"run",
"--with",
"mcp[cli]",
"--with",
"signal-export",
"mcp",
"run",
"C:\\Github\\signal-mcp-server\\server.py"
]
}
}
}
Signal Data Directory
The server automatically detects your Signal data directory based on your operating system:
- Windows:
%APPDATA%\Signal - macOS:
~/Library/Application Support/Signal - Linux:
~/.config/Signal(or Flatpak:~/.var/app/org.signal.Signal/config/Signal)
Encryption
If your Signal database is encrypted, you may need to provide:
password: Database password (if set)key: Encryption key (if required)
🏃 Running the Server
Start MCP Server
uv run .\server.py
Inspect MCP Server
Using the MCP Inspector:
npx @modelcontextprotocol/inspector uv run --with mcp[cli] mcp run c://github//signal-mcp-server//server.py
Using mcptools:
mcptools web cmd /c "uv.exe run --with mcp[cli] --with signal-export mcp run c:\\github\\signal-mcp-server\\server.py"
📖 Available Tools
1. signal_list_chats
Lists all Signal chats with their details.
Parameters:
source_dir(optional): Custom Signal data directory pathpassword(optional): Database passwordkey(optional): Encryption keyinclude_empty(optional): Include chats with no messagesinclude_disappearing(optional): Include disappearing messages
Example Response:
[
{
"name": "John Doe",
"number": "+1234567890",
"ServiceId": "abc123...",
"total_messages": 150
}
]
2. signal_get_chat_messages
Retrieves messages from a specific chat by name.
Parameters:
chat_name(required): Name of the chat contactlimit(optional): Maximum number of messages to returnoffset(optional): Number of messages to skip (for pagination)- Other parameters same as
signal_list_chats
Example Response:
[
{
"date": "2025-07-31T10:30:00",
"sender": "John Doe",
"body": "Hello! How are you?",
"quote": "",
"reactions": [],
"attachments": []
}
]
3. signal_search_chat
Search for specific text within Signal chat messages.
Parameters:
chat_name(required): Name of the chat to search withinquery(required): Text to search for in message bodieslimit(optional): Maximum number of matching messages to returnsource_dir(optional): Custom Signal data directory pathpassword(optional): Database passwordkey(optional): Encryption keyinclude_empty(optional): Include chats with no messagesinclude_disappearing(optional): Include disappearing messages
Example Response:
[
{
"date": "2025-07-31T10:30:00",
"sender": "John Doe",
"body": "Let's meet at the coffee shop tomorrow",
"quote": "",
"reactions": [],
"attachments": []
}
]
🎯 Available Prompts
The server includes pre-built prompts for common analysis tasks:
1. signal_summarize_chat_prompt
Generate a summary prompt for recent messages in a specific chat.
2. signal_chat_topic_prompt
Generate a prompt to analyze discussion topics in a chat.
3. signal_chat_sentiment_prompt
Generate a prompt to analyze message sentiment in a chat.
4. signal_search_chat_prompt
Generate a search prompt for finding specific text in a chat.
💡 Usage Examples
List all chats
"List all Signal chats please"
Get recent messages from a specific chat
"Show me the last 10 messages from the Family group chat"
Search for topics in a chat
"What are the main topics discussed in the Work Team chat?"
Summarize conversations
"Summarize the recent conversation with John Doe"
Search within a chat
"Search for messages containing 'meeting' in the Work Team chat"
Analyze chat sentiment
"Analyze the sentiment of recent messages with Sarah"
🔒 Security & Privacy
⚠️ Important: This server provides access to your personal Signal messages. Please:
- Only run this server locally
- Never expose it to the internet
- Be cautious about which AI agents you grant access
- Consider the privacy of others in your conversations
- Delete any exported data when no longer needed
🐛 Troubleshooting
Common Issues
-
"Signal database not found"
- Ensure Signal Desktop is installed
- Check if the data directory path is correct
- Verify you have read permissions
-
"Database is encrypted"
- Signal databases may be encrypted on some systems
- You may need to provide encryption credentials
-
"No messages found"
- Verify the chat name is spelled correctly
- Check if the chat has any messages
- Try using
include_empty=Trueparameter
-
"Signal-MCP-Server does not want to start in Claude Desktop"
- Check if there are no other Python versions installed besides the recommended version 3.13.
- You may need to uninstall older Python versions installed.
📚 References
🙏 Credits
This project builds upon the excellent work of the signal-export project by Chris Arderne. The core logic for accessing and reading Signal Desktop databases is derived from and inspired by the signal-export library. I'm grateful for Chris his open-source contribution that made this MCP server possible.
📄 License
MIT License
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
⚖️ Disclaimer
This tool is not affiliated with or endorsed by Signal. Use at your own risk and respect the privacy of your conversations.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。