
Signoz MCP Server
An MCP server that enables AI assistants to interact with Signoz observability platform, providing tools to query dashboards, metrics, traces, logs, and APM data with time range support.
README
Signoz MCP Server
Watch Working Demo on Cursor 📽️ https://youtube.com/shorts/jxjmGyXXz7A
Available Tools
The following tools are available via the MCP server:
- test_connection: Verify connectivity to your Signoz instance and configuration.
- fetch_dashboards: List all available dashboards from Signoz.
- fetch_dashboard_details: Retrieve detailed information about a specific dashboard by its ID. This information contains the metadata of the dashboard, not the live panel data.
- fetch_dashboard_data: Fetch all panel data for a given dashboard by name and time range.
- fetch_apm_metrics: Retrieve standard APM metrics (request rate, error rate, latency, apdex, etc.) for a given service and time range.
- fetch_services: Fetch all instrumented services from Signoz with optional time range filtering.
- execute_clickhouse_query: Execute custom Clickhouse SQL queries via the Signoz API with time range support.
- execute_builder_query: Execute Signoz builder queries for custom metrics and aggregations with time range support.
- fetch_traces_or_logs: Fetch traces or logs from SigNoz using ClickHouse SQL. Specify
data_type
('traces' or 'logs'), time range, service name, and limit. Returns tabular results for traces or logs.
🚀 Usage & Requirements
1. Get Your Signoz API Endpoint & (Optional) API Key
- Ensure you have a running Signoz instance (self-hosted or cloud).
- (Optional) If your Signoz instance requires an API key for the health endpoint, generate or obtain it from your Signoz UI.
2. Installation & Running Options
2A. Install & Run with uv (Recommended for Local Development)
2A.1. Install dependencies with uv
uv venv .venv
source .venv/bin/activate
uv sync
2A.2. Run the server with uv
uv run -m src.signoz_mcp_server.mcp_server
- You can also use
uv
to run any other entrypoint scripts as needed. - Make sure your
config.yaml
is in the same directory asmcp_server.py
or set the required environment variables (see Configuration section).
2B. Run with Docker Compose (Recommended for Production/Containerized Environments)
- Edit
src/signoz_mcp_server/config.yaml
with your Signoz details (host, API key if needed). - Start the server:
docker-compose up -d
- The server will run in HTTP (SSE) mode on port 8000 by default.
- You can override configuration with environment variables (see below).
2C. Run with Docker Image (Manual)
- Build the image:
docker build -t signoz-mcp-server .
- Run the container (YAML config fallback):
docker run -d \ -p 8000:8000 \ -v $(pwd)/src/signoz_mcp_server/config.yaml:/app/config.yaml:ro \ --name signoz-mcp-server \ signoz-mcp-server
- Or run with environment variables (recommended for CI/Docker MCP clients):
docker run -d \ -p 8000:8000 \ -e SIGNOZ_HOST="https://your-signoz-instance.com" \ -e SIGNOZ_API_KEY="your-signoz-api-key-here" \ -e SIGNOZ_SSL_VERIFY="true" \ -e MCP_SERVER_PORT=8000 \ -e MCP_SERVER_DEBUG=true \ --name signoz-mcp-server \ signoz-mcp-server
3. Configuration
The server loads configuration in the following order of precedence:
- Environment Variables (recommended for Docker/CI):
SIGNOZ_HOST
: Signoz instance URL (e.g.https://your-signoz-instance.com
)SIGNOZ_API_KEY
: Signoz API key (optional)SIGNOZ_SSL_VERIFY
:true
orfalse
(default:true
)MCP_SERVER_PORT
: Port to run the server on (default:8000
)MCP_SERVER_DEBUG
:true
orfalse
(default:true
)
- YAML file fallback (
config.yaml
):signoz: host: "https://your-signoz-instance.com" api_key: "your-signoz-api-key-here" # Optional ssl_verify: "true" server: port: 8000 debug: true
4. Integration with AI Assistants (e.g., Claude Desktop, Cursor)
You can integrate this MCP server with any tool that supports the MCP protocol. Here are the main options:
4A. Using Local Setup (with uv)
Before running the server locally, install dependencies and run with uv:
uv sync
Then add to your client configuration (e.g., claude-desktop.json
):
{
"mcpServers": {
"signoz": {
"command": "uv",
"args": ["run", "/full/path/to/src/signoz_mcp_server/mcp_server.py"],
"env": {
"SIGNOZ_HOST": "https://your-signoz-instance.com",
"SIGNOZ_API_KEY": "your-signoz-api-key-here",
"SIGNOZ_SSL_VERIFY": "true"
}
}
}
}
- Ensure your
config.yaml
is in the same directory asmcp_server.py
or update the path accordingly.
4B. Using Docker Compose or Docker (with environment variables, mcp-grafana style)
{
"mcpServers": {
"signoz": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e",
"SIGNOZ_HOST",
"-e",
"SIGNOZ_API_KEY",
"-e",
"SIGNOZ_SSL_VERIFY",
"ddroid/signoz-mcp-server",
"-t",
"stdio"
],
"env": {
"SIGNOZ_HOST": "https://your-signoz-instance.com",
"SIGNOZ_API_KEY": "your-signoz-api-key-here",
"SIGNOZ_SSL_VERIFY": "true"
}
}
}
}
- The
-t stdio
argument is supported for compatibility with Docker MCP clients (forces stdio handshake mode). - Adjust the volume path or environment variables as needed for your deployment.
4C. Connecting to an Already Running MCP Server (HTTP/SSE)
If you have an MCP server already running (e.g., on a remote host, cloud VM, or Kubernetes), you can connect your AI assistant or tool directly to its HTTP endpoint.
Example: Claude Desktop or Similar Tool
{
"mcpServers": {
"signoz": {
"url": "http://your-server-host:8000/mcp"
}
}
}
- Replace
your-server-host
with the actual host where your MCP server is running. - For local setup, use
localhost
as the server host (i.e.,http://localhost:8000/mcp
). - Use
http
for local or unsecured deployments, andhttps
for production or secured deployments. - Make sure the server is accessible from your client machine (check firewall, security group, etc.).
Example: MCP Config YAML
mcp:
endpoint: "http://your-server-host:8000/mcp"
protocolVersion: "2025-06-18"
- Replace
your-server-host
with the actual host where your MCP server is running. - For local setup, use
localhost
as the server host (i.e.,http://localhost:8000/mcp
). - Use
http
orhttps
in the URL schema depending on how you've deployed the MCP server. - No need to specify
command
orargs
—just point to the HTTP endpoint. - This works for any tool or assistant that supports MCP over HTTP.
- The server must be running in HTTP (SSE) mode (the default for this implementation).
Health Check
curl http://localhost:8000/health
The server runs on port 8000 by default.
5. Miscellaneous:
- Need help anywhere? Join our slack community and message on #mcp channel.
- Want to try without setting up? Follow this doc for a quickstart on DrDroid cloud platform.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。