Simple Code Review Assistant
Enables AI models to access GitHub repository information and search local documentation files. Provides three basic tools: fetching repository details, retrieving file contents from GitHub, and searching through local markdown documentation.
README
🔧 Simple Code Review Assistant - MCP Assignment
Assignment Duration: 6-8 Hours
Target Audience: Intermediate Level Developers
Focus: Model Context Protocol (MCP) Basics
🎯 Learning Objectives
By completing this assignment, you will:
- Build a basic MCP server using Model Context Protocol
- Implement simple tool interfaces for AI models
- Practice GitHub API integration
- Understand how AI models connect to external data sources
📋 Prerequisites
- Python 3.11+ experience
- Basic understanding of REST APIs
- Familiarity with GitHub API
- Basic knowledge of AI/LLM concepts
🚀 Quick Start
1. Environment Setup
# Clone and navigate to project
cd MCPAssignment
# Create virtual environment
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
2. Configuration
Create .env file in the project root:
GITHUB_TOKEN=your_github_token_here
GITHUB_REPO_OWNER=your_github_username
GITHUB_REPO_NAME=your_repository_name
3. Run the MCP Server
# Start the MCP Server
python server.py
# Test the server (in another terminal)
python client.py
📁 Project Structure
mcp-code-review/
├── README.md # Your implementation documentation
├── requirements.txt # Dependencies
├── .env.example # Environment template
├── server.py # Single MCP Server file
├── client.py # Simple client to test server
└── docs/
├── api_guide.md # Sample documentation
└── setup_guide.md # Sample documentation
🏗️ System Architecture
MCP Tools (Keep it Simple!)
| Tool | Purpose | Implementation |
|---|---|---|
| get_repository | Get repo info from GitHub | GitHub API call |
| search_docs | Search local documentation | Simple file search |
| get_file_content | Read file from repo | GitHub API call |
Simple Flow
Client → MCP Server → GitHub API / Local Files → Response
📋 Core Requirements (Simplified)
Must-Have Features (6-8 hours scope)
-
Basic MCP Server
- Implement ONE MCP server file (
server.py) - Support 3 simple tools (listed above)
- Follow basic MCP protocol
- Handle errors gracefully
- Implement ONE MCP server file (
-
GitHub Integration
- Connect to GitHub API using token
- Implement
get_repositorytool - Implement
get_file_contenttool - Add basic rate limiting
-
Documentation Search
- Implement
search_docstool for local files - Search through markdown files in
/docsfolder - Return relevant file content
- Support simple keyword matching
- Implement
-
Simple Client
- Create
client.pyto test your MCP server - Demonstrate all 3 tools working
- Show real GitHub data retrieval
- Display search results
- Create
🔧 Implementation Steps
Step 1: Setup
pip install mcp requests
# Create basic file structure
# Setup GitHub token
Step 2: Basic MCP Server
- Implement MCP protocol basics
- Add the 3 required tools
- Test with simple responses
Step 3: GitHub Integration
- Connect to GitHub API
- Implement repository and file tools
- Add error handling
Step 4: Documentation Search
- Create simple file search
- Add sample documentation files
- Test search functionality
Step 5: Client & Testing
- Build simple client
- Test all tools
- Create demo
📝 Submission Requirements (Minimal)
Required Files
- ✅
server.py- Working MCP server - ✅
client.py- Simple test client - ✅
requirements.txt- Dependencies - ✅
.env.example- Environment template - ✅ Sample docs in
/docsfolder
Demo Requirements
- ✅ Show MCP server starting up
- ✅ Demonstrate GitHub repository access
- ✅ Show documentation search working
- ✅ Explain your implementation approach
🔗 Resources
🔧 Development Commands
# Start MCP Server
python server.py
# Test with client (in another terminal)
python client.py --test-all
# Test individual tools
python client.py --test-github
python client.py --test-docs
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。