Simple MCP
A modular MCP server that provides comprehensive system automation capabilities including file operations, Telegram integration, job scheduling, system control, and YouTube downloads. Features persistent data storage and a clean architecture for easy extension and maintenance.
README
MCP Server - Modular Architecture
This MCP (Model Context Protocol) server is built with a clean, modular architecture for maintainable, scalable, and robust development.
📁 Project Structure
MCP-test/
├── main.py # Main entry point
├── config.py # Configuration and constants
├── persistence.py # Data persistence layer
├── scheduler.py # Job scheduling functionality
├── tools/ # MCP tools organized by concern
│ ├── __init__.py # Tools package initialization and registry
│ ├── basic_tools.py # Basic utility tools
│ ├── control_tools.py # Server control tools (restart, shutdown, etc)
│ ├── file_tools.py # File system operations
│ ├── persistence_tools.py # Persistence management tools
│ ├── scheduling_tools.py # Scheduling-related tools
│ ├── system_tools.py # System information and commands
│ ├── telegram_tools.py # Telegram integration
│ └── youtube_tools.py # YouTube-related tools
├── requirements.txt # Python dependencies
├── .env # Environment variables (create this)
└── README.md # This file
🚀 Quick Start
-
Install dependencies:
pip install -r requirements.txt -
Create environment file:
# Create .env file with your configuration TG_TOKEN=your_telegram_bot_token ADMIN_ID=your_telegram_chat_id -
Run the server:
python main.py
📋 Available Tools
Basic Tools
echo— Echo back input text
File Tools
read_file— Read the contents of a filewrite_file— Write content to a filecreate_file— Create a new empty filecreate_folder— Create a new directorylist_files— List files and folders in a directorydelete_file— Delete a filerename_file— Rename or move a filemove_folder— Move a folder (directory) to a new location
System Tools
system_info— Get basic system information (platform, memory, CPU, etc.)list_processes— List running processes (PID, name, user)run_python_code— Execute a Python code snippet and return the outputinstall_python_library— Install a Python library (via pip) and update requirements.txt
Telegram Integration
send_telegram_message— Send Telegram messages, audio, video, or documents (with optional metadata)receive_telegram_updates— Receive and download incoming Telegram messages and files
Scheduling & Job Tools (still in testing)
schedule_telegram_message— Schedule a Telegram message to be sent at a specific time (supports ISO datetime or relative times like "in 10 minutes")schedule_function_call— Schedule any registered function to run once at a specified timeschedule_recurring_job— Schedule recurring jobs using cron expressions or intervals (e.g., "every 5 minutes", "0 9 ** 1-5")list_scheduled_jobs— List all currently scheduled jobs with detailscancel_scheduled_job— Cancel a scheduled job by its IDget_available_functions— List all functions available for schedulingget_job_execution_log— View the execution history and results of scheduled jobs
Persistence Tools
update_persistent_info— Add or update a key-value pair in persistent storageget_persistent_info— Retrieve all persistent data, or a specific key's valuedelete_persistent_info_key— Delete a key from persistent storage
Control Tools
type_text— Simulate typing text using the keyboardpress_hotkey— Press a combination of keys as a hotkey (e.g., Ctrl+Tab)switch_to_window— Switch focus to a window with a specified titlelist_open_windows— List the titles of all currently open windowsmove_mouse_to— Move the mouse cursor to specified screen coordinatesclick_mouse— Click the mouse at specified coordinates or at the current position
YouTube Tools
youtube_download_video— Download a YouTube video as MP4youtube_download_audio— Download YouTube audio as MP3youtube_video_info— Get detailed YouTube video information
🔧 Architecture Benefits
Separation of Concerns
- config.py: Centralized configuration
- persistence.py: Data storage abstraction
- scheduler.py: Scheduling logic isolated
- tools/: Tools organized by functionality
Maintainability
- Add new tools by creating new modules
- Clear dependencies between components
- Consistent error handling and logging
Scalability
- Modular design for easy extension
- Shared MCP instance prevents conflicts
- Function registry enables dynamic scheduling
📊 Data Persistence
The server automatically persists:
- Scheduled Jobs: Survives server restarts
- Execution Logs: Detailed job run history
- Persistent Info: Custom key-value storage
Files created:
scheduled_jobs.json— Job definitionsjob_execution_log.json— Execution historypersistent_info.json— Custom datamain.log— Application logserror.log— Error logs
🛠️ Development
Adding New Tools
- Create a new module in
tools/ - Import the shared MCP instance:
from . import mcp - Define your tool function with
@mcp.tool()decorator - Register the function in
tools/__init__.pyif needed
Adding New Persistence Functions
- Add functions to
persistence.py - Import and use them in your tools
- Follow the existing pattern for error handling
🔍 Troubleshooting
- Check logs in
main.loganderror.log - Verify environment variables in
.env - Ensure all dependencies are installed
- Check file permissions for persistence
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。