Simple Snowflake MCP
Simple Snowflake MCP Server to work behind a corporate proxy.
README
Simple Snowflake MCP server
Simple Snowflake MCP Server to work behind a corporate proxy (because I could not get that in a few minutes with existing servers, but my own server, yup). Still don't know if it's good or not. But it's good enough for now.
Tools
The server exposes the following MCP tools to interact with Snowflake:
- execute-snowflake-sql: Executes a SQL query on Snowflake and returns the result (list of dictionaries)
- list-snowflake-warehouses: Lists available Data Warehouses (DWH) on Snowflake
- list-databases: Lists all accessible Snowflake databases
- list-views: Lists all views in a database and schema
- describe-view: Gives details of a view (columns, SQL)
- query-view: Queries a view with an optional row limit (markdown result)
- execute-query: Executes a SQL query in read-only mode (SELECT, SHOW, DESCRIBE, EXPLAIN, WITH) or not (if
read_onlyis false), result in markdown format
Quickstart
Install
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
<details> <summary>Development/Unpublished Servers Configuration</summary>
"mcpServers": {
"simple_snowflake_mcp": {
"command": "uv",
"args": [
"--directory",
".", // Use current directory for GitHub
"run",
"simple_snowflake_mcp"
]
}
}
</details>
<details> <summary>Published Servers Configuration</summary>
"mcpServers": {
"simple_snowflake_mcp": {
"command": "uvx",
"args": [
"simple_snowflake_mcp"
]
}
}
</details>
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/ directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--tokenorUV_PUBLISH_TOKEN - Or username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
npx @modelcontextprotocol/inspector uv --directory . run simple-snowflake-mcp
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
New Feature: Snowflake SQL Execution
The server exposes an MCP tool execute-snowflake-sql to execute a SQL query on Snowflake and return the result.
Usage
Call the MCP tool execute-snowflake-sql with a sql argument containing the SQL query to execute. The result will be returned as a list of dictionaries (one per row).
Example:
{
"name": "execute-snowflake-sql",
"arguments": { "sql": "SELECT CURRENT_TIMESTAMP;" }
}
The result will be returned in the MCP response.
Installation and configuration in VS Code
-
Clone the project and install dependencies
git clone <your-repo> cd simple_snowflake_mcp python -m venv .venv .venv/Scripts/activate # Windows pip install -r requirements.txt # or `uv sync --dev --all-extras` if available -
Configure Snowflake access
- Copy
.env.exampleto.env(or create.envat the root) and fill in your credentials:SNOWFLAKE_USER=... SNOWFLAKE_PASSWORD=... SNOWFLAKE_ACCOUNT=... # Optional: SNOWFLAKE_WAREHOUSE # Optional: Snowflake warehouse name # Optional: SNOWFLAKE_DATABASE # Optional: default database name # Optional: SNOWFLAKE_SCHEMA # Optional: default schema name # Optional: MCP_READ_ONLY=true|false # Optional: true/false to force read-only mode
- Copy
-
Configure VS Code for MCP debugging
- The
.vscode/mcp.jsonfile is already present:{ "servers": { "simple-snowflake-mcp": { "type": "stdio", "command": ".venv/Scripts/python.exe", "args": ["-m", "simple_snowflake_mcp"] } } } - Open the command palette (Ctrl+Shift+P), type
MCP: Start Serverand selectsimple-snowflake-mcp.
- The
-
Usage
- The exposed MCP tools allow you to query Snowflake (list-databases, list-views, describe-view, query-view, execute-query, etc.).
- For more examples, see the MCP protocol documentation: https://github.com/modelcontextprotocol/create-python-server
Supported MCP Functions
The server exposes the following MCP tools to interact with Snowflake:
- execute-snowflake-sql: Executes a SQL query on Snowflake and returns the result (list of dictionaries)
- list-snowflake-warehouses: Lists available Data Warehouses (DWH) on Snowflake
- list-databases: Lists all accessible Snowflake databases
- list-views: Lists all views in a database and schema
- describe-view: Gives details of a view (columns, SQL)
- query-view: Queries a view with an optional row limit (markdown result)
- execute-query: Executes a SQL query in read-only mode (SELECT, SHOW, DESCRIBE, EXPLAIN, WITH) or not (if
read_onlyis false), result in markdown format
For each tool, see the Usage section or the MCP documentation for the call format.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。