Simple Snowflake MCP

Simple Snowflake MCP

Simple Snowflake MCP Server to work behind a corporate proxy.

Category
访问服务器

README

Simple Snowflake MCP server

Simple Snowflake MCP Server to work behind a corporate proxy (because I could not get that in a few minutes with existing servers, but my own server, yup). Still don't know if it's good or not. But it's good enough for now.

Tools

The server exposes the following MCP tools to interact with Snowflake:

  • execute-snowflake-sql: Executes a SQL query on Snowflake and returns the result (list of dictionaries)
  • list-snowflake-warehouses: Lists available Data Warehouses (DWH) on Snowflake
  • list-databases: Lists all accessible Snowflake databases
  • list-views: Lists all views in a database and schema
  • describe-view: Gives details of a view (columns, SQL)
  • query-view: Queries a view with an optional row limit (markdown result)
  • execute-query: Executes a SQL query in read-only mode (SELECT, SHOW, DESCRIBE, EXPLAIN, WITH) or not (if read_only is false), result in markdown format

Quickstart

Install

Claude Desktop

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json

On Windows: %APPDATA%/Claude/claude_desktop_config.json

<details> <summary>Development/Unpublished Servers Configuration</summary>

"mcpServers": {
  "simple_snowflake_mcp": {
    "command": "uv",
    "args": [
      "--directory",
      ".", // Use current directory for GitHub
      "run",
      "simple_snowflake_mcp"
    ]
  }
}

</details>

<details> <summary>Published Servers Configuration</summary>

"mcpServers": {
  "simple_snowflake_mcp": {
    "command": "uvx",
    "args": [
      "simple_snowflake_mcp"
    ]
  }
}

</details>

Development

Building and Publishing

To prepare the package for distribution:

  1. Sync dependencies and update lockfile:
uv sync
  1. Build package distributions:
uv build

This will create source and wheel distributions in the dist/ directory.

  1. Publish to PyPI:
uv publish

Note: You'll need to set PyPI credentials via environment variables or command flags:

  • Token: --token or UV_PUBLISH_TOKEN
  • Or username/password: --username/UV_PUBLISH_USERNAME and --password/UV_PUBLISH_PASSWORD

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.

You can launch the MCP Inspector via npm with this command:

npx @modelcontextprotocol/inspector uv --directory . run simple-snowflake-mcp

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

New Feature: Snowflake SQL Execution

The server exposes an MCP tool execute-snowflake-sql to execute a SQL query on Snowflake and return the result.

Usage

Call the MCP tool execute-snowflake-sql with a sql argument containing the SQL query to execute. The result will be returned as a list of dictionaries (one per row).

Example:

{
  "name": "execute-snowflake-sql",
  "arguments": { "sql": "SELECT CURRENT_TIMESTAMP;" }
}

The result will be returned in the MCP response.

Installation and configuration in VS Code

  1. Clone the project and install dependencies

    git clone <your-repo>
    cd simple_snowflake_mcp
    python -m venv .venv
    .venv/Scripts/activate  # Windows
    pip install -r requirements.txt  # or `uv sync --dev --all-extras` if available
    
  2. Configure Snowflake access

    • Copy .env.example to .env (or create .env at the root) and fill in your credentials:
      SNOWFLAKE_USER=...
      SNOWFLAKE_PASSWORD=...
      SNOWFLAKE_ACCOUNT=...
      # Optional: SNOWFLAKE_WAREHOUSE  # Optional: Snowflake warehouse name
      # Optional: SNOWFLAKE_DATABASE   # Optional: default database name
      # Optional: SNOWFLAKE_SCHEMA     # Optional: default schema name
      # Optional: MCP_READ_ONLY=true|false  # Optional: true/false to force read-only mode
      
  3. Configure VS Code for MCP debugging

    • The .vscode/mcp.json file is already present:
      {
        "servers": {
          "simple-snowflake-mcp": {
            "type": "stdio",
            "command": ".venv/Scripts/python.exe",
            "args": ["-m", "simple_snowflake_mcp"]
          }
        }
      }
      
    • Open the command palette (Ctrl+Shift+P), type MCP: Start Server and select simple-snowflake-mcp.
  4. Usage

    • The exposed MCP tools allow you to query Snowflake (list-databases, list-views, describe-view, query-view, execute-query, etc.).
    • For more examples, see the MCP protocol documentation: https://github.com/modelcontextprotocol/create-python-server

Supported MCP Functions

The server exposes the following MCP tools to interact with Snowflake:

  • execute-snowflake-sql: Executes a SQL query on Snowflake and returns the result (list of dictionaries)
  • list-snowflake-warehouses: Lists available Data Warehouses (DWH) on Snowflake
  • list-databases: Lists all accessible Snowflake databases
  • list-views: Lists all views in a database and schema
  • describe-view: Gives details of a view (columns, SQL)
  • query-view: Queries a view with an optional row limit (markdown result)
  • execute-query: Executes a SQL query in read-only mode (SELECT, SHOW, DESCRIBE, EXPLAIN, WITH) or not (if read_only is false), result in markdown format

For each tool, see the Usage section or the MCP documentation for the call format.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选