Skill-to-MCP
Converts AI Skills (following Claude Skills format) into MCP server resources, enabling LLM applications to discover, access, and utilize self-contained skill directories through the Model Context Protocol. Provides tools to list available skills, retrieve skill details and content, and read supporting files with security protections.
README
Skill-to-MCP
Convert AI Skills (following Claude Skills format) into MCP server resources, making them accessible through the Model Context Protocol.
Part of BioContextAI - A community-driven initiative connecting agentic AI with biomedical resources through standardized MCP servers. While this package is domain-agnostic and can be used for any skill collection, it was developed to support the biomedical research community.
Overview
This MCP server exposes Claude Skills as resources that can be accessed by LLM applications through the Model Context Protocol. Skills are self-contained directories containing a SKILL.md file with YAML frontmatter, along with supporting files like scripts, references, and examples.
Features
- Automatic skill discovery: Recursively finds all
SKILL.mdfiles in theskills/directory - Frontmatter parsing: Extracts skill metadata (name, description) from YAML frontmatter
- Three core tools:
get_available_skills: Lists all available skills with descriptionsget_skill_details: Returns SKILL.md content and file listing for a specific skillget_skill_related_file: Reads any file within a skill directory (with directory traversal protection)
- Security: Path validation prevents access outside skill directories
Getting Started
Please refer to the documentation for comprehensive guides, or jump to:
- Configuration - Set up your skills directory
- Usage - Learn about the three core tools
- Creating Skills - Build your own skills
- Installation - Multiple installation options
Quick Links
- Documentation: skill-to-mcp.readthedocs.io
- BioContextAI Registry: biocontext.ai/registry
- API Reference: API documentation
- Source Code: GitHub
- Issue Tracker: GitHub Issues
Configuration
The MCP server requires a skills directory to be specified. This allows you to:
- Install the package separately from your skills
- Edit skills without modifying the package
- Use different skill collections for different projects
Set the skills directory using either:
- Command-line option:
--skills-dir /path/to/skills - Environment variable:
SKILLS_DIR=/path/to/skills
Example Configuration for MCP Clients
{
"mcpServers": {
"skill-to-mcp": {
"command": "uvx",
"args": ["skill_to_mcp", "--skills-dir", "/path/to/your/skills"],
"env": {
"UV_PYTHON": "3.12"
}
}
}
}
Or using environment variables:
{
"mcpServers": {
"skill-to-mcp": {
"command": "uvx",
"args": ["skill_to_mcp"],
"env": {
"UV_PYTHON": "3.12",
"SKILLS_DIR": "/path/to/your/skills"
}
}
}
}
Usage
Once configured in your MCP client, the server provides three tools:
get_available_skills
Returns a list of all available skills with metadata:
[
{
"name": "single-cell-rna-qc",
"description": "Performs quality control on single-cell RNA-seq data...",
"path": "/path/to/skills/single-cell-rna-qc"
}
]
get_skill_details
Returns the full SKILL.md content and list of files for a specific skill:
{
"skill_content": "---\nname: single-cell-rna-qc\n...",
"files": ["SKILL.md", "scripts/qc_analysis.py", "references/guidelines.md"]
}
The return_type parameter controls what data is returned:
"content": Returns only the SKILL.md content as text"file_path": Returns only the absolute path to SKILL.md"both"(default): Returns both content and file path in a dict
get_skill_related_file
Reads a specific file within a skill directory:
get_skill_related_file(
skill_name="single-cell-rna-qc",
relative_path="scripts/qc_analysis.py",
return_type="content" # "content", "file_path", or "both" (default)
)
Example Configurations
Claude Desktop Configuration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"biomedical-skills": {
"command": "uvx",
"args": [
"skill_to_mcp",
"--skills-dir",
"/Users/yourname/biomedical-skills"
],
"env": {
"UV_PYTHON": "3.12"
}
}
}
}
Multiple Skill Collections
You can run multiple instances with different skill directories:
{
"mcpServers": {
"biomedical-skills": {
"command": "uvx",
"args": ["skill_to_mcp", "--skills-dir", "/path/to/biomedical-skills"]
},
"data-science-skills": {
"command": "uvx",
"args": ["skill_to_mcp", "--skills-dir", "/path/to/data-science-skills"]
}
}
}
Creating Skills
Skills should be placed in your configured skills directory. Each skill must:
- Have its own subdirectory
- Contain a
SKILL.mdfile with YAML frontmatter - Follow the frontmatter format:
---
name: my-skill-name
description: Brief description of what this skill does and when to use it
---
# Skill Content
Instructions and documentation go here...
Skill Naming Requirements
- Use lowercase letters, numbers, and hyphens only
- Maximum 64 characters
- No XML tags or reserved words
See the included example skills/single-cell-rna-qc/SKILL.md for a complete reference.
Example Skills Directory Structure
my-skills/
├── skill-1/
│ ├── SKILL.md
│ ├── scripts/
│ └── references/
├── skill-2/
│ ├── SKILL.md
│ └── data/
└── skill-3/
└── SKILL.md
Installation
You need to have Python 3.11 or newer installed on your system. If you don't have Python installed, we recommend installing uv.
There are several alternative options to install skill-to-mcp:
- Use
uvxto run it immediately (requires SKILLS_DIR environment variable):
SKILLS_DIR=/path/to/skills uvx skill_to_mcp
Or with the command-line option:
uvx skill_to_mcp --skills-dir /path/to/skills
- Include it in various MCP clients that support the
mcp.jsonstandard:
{
"mcpServers": {
"skill-to-mcp": {
"command": "uvx",
"args": ["skill_to_mcp", "--skills-dir", "/path/to/your/skills"],
"env": {
"UV_PYTHON": "3.12"
}
}
}
}
- Install it through
pip:
pip install --user skill_to_mcp
- Install the latest development version:
pip install git+https://github.com/biocontext-ai/skill-to-mcp.git@main
Deployment Options
Local Development
For development and testing:
# Using uvx (recommended)
SKILLS_DIR=/path/to/skills uvx skill_to_mcp
# Using pip
pip install skill_to_mcp
skill_to_mcp --skills-dir /path/to/skills
Production Deployment
For production environments with HTTP transport:
export MCP_ENVIRONMENT=PRODUCTION
export SKILLS_DIR=/path/to/skills
export MCP_TRANSPORT=http
export MCP_PORT=8000
skill_to_mcp
Docker Deployment
Create a Dockerfile:
FROM python:3.12-slim
WORKDIR /app
RUN pip install skill_to_mcp
COPY skills /app/skills
ENV SKILLS_DIR=/app/skills
ENV MCP_TRANSPORT=http
ENV MCP_PORT=8000
CMD ["skill_to_mcp"]
Build and run:
docker build -t skill-to-mcp .
docker run -p 8000:8000 skill-to-mcp
About BioContextAI
BioContextAI is a community effort to connect agentic artificial intelligence with biomedical resources using the Model Context Protocol. The Registry is a community-driven catalog of MCP servers for biomedical research, enabling researchers and developers to discover, access, and contribute specialized tools and databases.
Key Principles:
- FAIR4RS Compliant: Findable, Accessible, Interoperable, Reusable for Research Software
- Community-Driven: Open-source and collaborative development
- Standardized: Built on the Model Context Protocol specification
Contributing
Contributions are welcome! See CONTRIBUTING.md for guidelines on:
- Development setup
- Code style requirements
- Testing procedures
- Pull request process
To contribute skills to the biomedical community, consider adding them to the BioContextAI Registry.
Contact
If you found a bug, please use the issue tracker.
For questions about BioContextAI or the registry, visit biocontext.ai.
Citation
If you use this software in your research, please cite the BioContextAI paper:
@misc{kuehlCommunitybasedBiomedicalContext2025,
title = {Community-Based Biomedical Context to Unlock Agentic Systems},
author = {Kuehl, Malte and Schaub, Darius P. and Carli, Francesco and Heumos, Lukas and {Fern{\'a}ndez-Zapata}, Camila and Kaiser, Nico and Schaul, Jonathan and Panzer, Ulf and Bonn, Stefan and Lobentanzer, Sebastian and {Saez-Rodriguez}, Julio and Puelles, Victor G.},
year = {2025},
month = jul,
pages = {2025.07.21.665729},
publisher = {bioRxiv},
doi = {10.1101/2025.07.21.665729},
url = {https://biocontext.ai}
}
Acknowledgments
- Example Skill: The included
single-cell-rna-qcskill is adapted from Anthropic's Life Sciences repository - Anthropic: For developing Claude Skills and the Model Context Protocol
- scverse®: The scverse community (scverse.org) for best practices in single-cell analysis
- BioContextAI Community: For fostering open-source biomedical AI infrastructure
License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Note: While this software is open-source, individual skills may have their own licenses. Users are responsible for compliance with the licenses of any skills they use or distribute.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。